• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Oncotarget: Characterization of porcine hepatocellular carcinoma for liver cancer

Bioengineer by Bioengineer
October 10, 2020
in Health
Reading Time: 5 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Volume 11, Issue 28 of Oncotarget features “Development and comprehensive characterization of porcine hepatocellular carcinoma for translational liver cancer investigation” by Gaba et, al. which reported that reliable development of Oncopig HCC cell lines

IMAGE

Credit: Kyle M. Schachtschneider – [email protected]

Volume 11, Issue 28 of Oncotarget features “Development and comprehensive characterization of porcine hepatocellular carcinoma for translational liver cancer investigation” by Gaba et, al. which reported that reliable development of Oncopig HCC cell lines was demonstrated through hepatocyte isolation and Cre recombinase exposure across 15 Oncopigs.

Oncopig and human HCC cell lines displayed similar cell cycle lengths, alpha-fetoprotein production, arginase-1 staining, chemosusceptibility, and drug-metabolizing enzyme expression.

The ability of Oncopig HCC cells to consistently produce tumors in vivo was confirmed via subcutaneous injection into immunodeficient mice and Oncopigs.

Reproducible development of intrahepatic tumors in an alcohol-induced fibrotic microenvironment was achieved via engraftment of SQ tumors into fibrotic Oncopig livers.

Finally, Oncopig HCC cells are amenable to gene editing for the development of personalized HCC tumors.

Dr. Kyle M. Schachtschneider from The Department of Radiology and The Biological Resources Laboratory at The University of Illinois at Chicago as well as The National Center for Supercomputing Application at The University of Illinois at Urbana-Champaign said, “Hepatocellular carcinoma (HCC)–the most common type of primary liver cancer–is an aggressive cancer that spans more than 850,000 new yearly diagnoses and causes 800,000 annual deaths, representing the fifth most common cancer globally and the second most common cause of cancer-related death worldwide.“

The rabbit VX2 model has been considered the most relevant and widely used model to test HCC LRTs to date.

As such, there is a crucial need for more clinically relevant large animal models that faithfully recapitulate human HCC to address unmet clinical needs and serve as a bridge between murine studies and clinical practice.

This study describes the utilization of the Oncopig Cancer Model for the development of a clinically relevant, translational porcine HCC model.

The Oncopig Cancer Model is a transgenic pig model that develops site and cell-specific tumors following Cre recombinase induced expression of heterozygous KRASG12D and TP53R167H transgenes.

The large size of the pig and its similarities with humans in terms of anatomy, physiology, metabolism, immunity, and genetics make it an ideal model species for the development of a large animal cancer model.

Development of Oncopig HCC cell lines has been previously described, however, prior work was limited to characterization of HCC cell lines derived from three Oncopigs, minimal in vitro and in vivo profiling, and no description of intrahepatic tumors.

As such, this study was undertaken to test the hypothesis that phenotypically consistent Oncopig HCC cells that faithfully recapitulate the in vitro features of human HCC can be developed across a large Oncopig cohort and that these cells can be utilized to develop clinically relevant intrahepatic HCC tumors in Oncopigs.

The Schachtschneider Research Team concluded in their Oncotarget Research Paper, “the Oncopig HCC model offers a novel, physiologically and anatomically relevant cancer model for which a multitude of innovative therapeutic modalities can be applied and tested while significantly reducing the costs, confounding variables seen in human subjects, and lengthy conduct of human clinical trials. Importantly, the Oncopig can be utilized to conduct correlative studies for more efficient and consistent investigation of new therapies. Its size allows for utilization of the same methods and instruments used in human clinical practice, including CT and magnetic resonance imaging technologies. This model is thus amenable to developing and establishing medical imaging standards related to diagnosing HCC tumors and tracking treatment response using accepted radiologic criteria, a critical facet of therapeutic discovery and validation. Importantly, the Oncopig is also immunocompetent, lending itself to investigation of immunotherapies [32]. Therefore, the Oncopig fulfills the currently unmet clinical modeling needs for HCC, particularly for pilot investigations of experimental therapies or experimental therapeutic combinations not feasible in human subjects.“

“The Oncopig HCC model offers a novel, physiologically and anatomically relevant cancer model for which a multitude of innovative therapeutic modalities can be applied and tested while significantly reducing the costs, confounding variables seen in human subjects, and lengthy conduct of human clinical trials. Importantly, the Oncopig can be utilized to conduct correlative studies for more efficient and consistent investigation of new therapies. Its size allows for utilization of the same methods and instruments used in human clinical practice, including CT and magnetic resonance imaging technologies. This model is thus amenable to developing and establishing medical imaging standards related to diagnosing HCC tumors and tracking treatment response using accepted radiologic criteria, a critical facet of therapeutic discovery and validation. Importantly, the Oncopig is also immunocompetent, lending itself to investigation of immunotherapies [32]. Therefore, the Oncopig fulfills the currently unmet clinical modeling needs for HCC, particularly for pilot investigations of experimental therapies or experimental therapeutic combinations not feasible in human subjects.”

Sign up for free Altmetric alerts about this article

DOI – https://doi.org/10.18632/oncotarget.27647

Full text – https://www.oncotarget.com/article/27647/text/

Correspondence to – Kyle M. Schachtschneider – [email protected]

Keywords –
liver cancer,
transgenic pigs,
large animal model,
interventional radiology,
personalized medicine

About Oncotarget

Oncotarget is a weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.

To learn more about Oncotarget, please visit https://www.oncotarget.com or connect with:

SoundCloud – https://soundcloud.com/oncotarget
Facebook – https://www.facebook.com/Oncotarget/
Twitter – https://twitter.com/oncotarget
LinkedIn – https://www.linkedin.com/company/oncotarget
Pinterest – https://www.pinterest.com/oncotarget/
Reddit – https://www.reddit.com/user/Oncotarget/

Oncotarget is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Media Contact
@RYANJAMESJESSUP
[email protected]

Original Source

https://www.oncotarget.com/news/pr/characterization-of-porcine-hepatocellular-carcinoma-for-liver-cancer/

Related Journal Article

http://dx.doi.org/10.18632/oncotarget.27647

Tags: cancerCarcinogensMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

PFAS Levels Linked in Water and Southern California Adults

October 30, 2025

ECM, ROCK, and Polarity Orchestrate Lung Growth

October 30, 2025

Experts Convene at National Summit to Unveil Groundbreaking Strategies for Reducing Firearm-Related Harms

October 30, 2025

PRRFCT Match: Virtual Support for Young Children

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PFAS Levels Linked in Water and Southern California Adults

ECM, ROCK, and Polarity Orchestrate Lung Growth

Cluster Analysis Links Body Composition, Child Health Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.