• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stress-free gel

Bioengineer by Bioengineer
October 8, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – Researchers in the Institute of Industrial Science at The University of Tokyo studied a new method for creating semisolid colloidal systems with less internal mechanical stress by delaying network formation. This work may help scientists better understand biological processes involving cytoplasm.

Within soft-matter physics, gels are a relatively familiar sight. Certain particle suspensions can be turned into a semisolid when particles join to form a stiff network. Think of Jell-O, in which a soupy mix of gelatin proteins sets into a delicious, free-standing dessert. Gels play important roles in biology, and may be involved in how cells move and respond to changing external conditions.

Scientists at The University of Tokyo studied the mechanism by which dispersed particles, called colloids, join together during gelation. Most gel networks are thought to form before dynamical motion stops, which leads to built-in mechanical stress. If the creation of the networks could be delayed, they could be made free from such stress and more stable .

“A net under mechanical tension is stretched and sometimes broken. Conventional colloidal gels suffer from such stress, and thus, are not so stable. Stress-free gels are free from this problem,” first author Hideyo Tsurusawa explains.

The team found that network formation (percolation) occurs after the formation of a mechanically stable structure and the cessation of particle motion for a lower concentration of colloidal particles compared with the one at which traditional gels form. The researchers used confocal microscopy and computer simulations to better understand both conventional and stress-free gelation. Systems with fluorescently-labeled poly(methyl methacrylate) colloids could be monitored to see how long it took for networks to form and for particle motion to be arrested.

The choice between these two types of gelation is determined by the large and small relationship between the two characteristic times, i.e., “time until the mechanically stable structure is formed” and “time to percolation”. Furthermore, when the interaction between the particles is short-range, the large and small relationship is determined solely by the volume fraction of the colloid.

“We found that colloidal gelation can universally be grouped into the two types. This universal classification of the gelation of particle systems is expected to make a significant contribution to the understanding of gelation in the field of soft matter and biology.,” senior author Hajime Tanaka says. “Our findings could be applied to developing new industrial processes that create semisolid products, including foodstuffs, more efficiently.”

###

The work is published in Science Advances as ” A unique route of colloidal phase separation yields stress-free gels.” (DOI: 10.1126/sciadv.abb8107)

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Hajime Tanaka
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3375/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abb8107

Tags: Atomic/Molecular/Particle PhysicsBiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMolecular PhysicsOpticsPharmaceutical SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iminium Ion Triplet Reactivity Powers Asymmetric Photocycloadditions

October 6, 2025

Boston University Professor Honored with 2025 Eugene Braunwald Academic Mentorship Award

October 6, 2025

Exogenous Cystine Influences Glutamine Dependence in TNBC

October 6, 2025

Student and Faculty Views on Holopatient Tech in Nursing

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Iminium Ion Triplet Reactivity Powers Asymmetric Photocycloadditions

Boston University Professor Honored with 2025 Eugene Braunwald Academic Mentorship Award

Exogenous Cystine Influences Glutamine Dependence in TNBC

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.