• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Microscope lens inspired by lighthouse

Bioengineer by Bioengineer
October 5, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST; Andrea Bertoncini

An optical device that resembles a miniaturized lighthouse lens can make it easier to peer into Petri dishes and observe molecular-level details of biological processes, including cancer cell growth. Developed by KAUST, the new lens is also very cost effective.

Many bioimaging techniques require fluorescent dyes to be added to specific cell targets. But a recently developed method known as stimulated raman scattering (SRS) microscopy can avoid cumbersome labeling steps by using laser pulses to collect molecular vibrational signals from biological samples. The ability of SRS microscopes to produce high-resolution, noninvasive images at real-time speeds has prompted researchers to deploy them also for in vivo disease diagnostic studies.

One drawback of SRS microscopes, however, is that the detection system is affected by a background signal, known as cross-phase modulation, which is generated by the intense interactions between laser pulses and the samples.

“This background signal is ubiquitous and reduces the contrast during microscopic observation of complex samples, such as live cells,” explains Carlo Liberale from KAUST. “It also makes it difficult to identify target molecules.”

To avoid the effects of cross-phase modulation, most SRS microscopes need to use bulky glass objectives capable of collecting wide angles of light. However, these kinds of lenses are nearly impossible to fit into the stage-top incubators that are used to grow live cells for bioimaging.

Andrea Bertoncini, a researcher in Liberale’s group, spearheaded work to create an ultrathin SRS lens using laser-based three-dimensional (3D) printing. Taking their cue from the slender design of lighthouse lenses, the KAUST team printed tiny lens-like and mirror-like features into a transparent polymer only a fraction of a millimeter thick.

“This type of lens design is a very efficient way to collect and redirect light coming from wide-angle sources right to our laser detector,” says Bertoncini. “And since it’s so thin, it easily fits into the closed chambers of an incubator.”

After calibration trials confirmed that their new lens could reject the cross phase modulation background, the researchers turned their sights on human cancer cells cultured in a conventional Petri dish. These experiments revealed that the lens could image the cell’s interior components with resolution similar to conventional SRS microscopes, but in a much more convenient and less expensive format.

“The objectives we normally use to collect SRS microscope signals cost a few thousand dollars,” says Bertoncini. “Now we have a lens with similar benefits that we can produce for less than a tenth of that price.”

###

Media Contact
KAUST Discovery team
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1039/microscope-lens-inspired-by-lighthouse

Related Journal Article

http://dx.doi.org/10.1002/jbio.202000219

Tags: BiotechnologyCell BiologyOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

August 22, 2025
Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ovarian Cancer Trends in War-Torn Syria

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

RETICULATA1: Key Plastid Basic Amino Acid Transporter

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.