• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lab grown tumour models could lead to improved ovarian cancer treatments

Bioengineer by Bioengineer
October 2, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Alvaro Mata

Scientists have created a three-dimensional (3D) tumour model in the laboratory for ovarian cancer that could lead to improved understanding and treatment of the disease.

The international team, led by the University of Nottingham and Queen Mary University London have created a multicellular 3D microenvironment that recreates the way tumour cells grow in ovarian cancer and respond to chemotherapy drugs. The research has been published today in Science Advances (link to be added)

There is a need for improved 3D cancer models to study tumour growth and progression in patients and test responses to new treatments. At present, 90% of successful cancer treatments tested pre-clinically fail in the early phases of clinical trials and less than 5% of oncology drugs are successful in clinical trials. Pre-clinical tests mostly rely on a combination of two-dimensional (2D) lab grown cell cultures and animal models to predict responses to treatment.

However, conventional 2D cell cultures fail to mimic key features of tumour tissues and interspecies differences can result in many successful treatments in animal hosts being ineffective in humans. Consequently, novel experimental 3D cancer models are needed to better recreate the human tumour microenvironment and incorporate patient-specific differences.

The new hydrogel biomaterial is made by the co-assembly of peptides with proteins found in ovarian cancer. The mechanism of formation enables the peptides to assemble these proteins into molecular environments, emulating how they are presented in the patient tumour.

Professor Alvaro Mata, from the University of Nottingham’s School of Pharmacy led the study, said: “Bioengineered self-assembling matrices expand our experimental repertoire to study tumour growth and progression in a biologically relevant, yet controlled, manner. In this study we used peptide amphiphiles to co-assemble with extracellular matrix proteins into tuneable 3D models of the tumour microenvironment. The peptide/protein composite matrix was designed to attempt to resemble physical, biomolecular, and cellular features of tumours present in patients. We tested the response of the lab grown tumours using chemotherapeutics to validate the functionality of the multicellular constructs and saw the tumour shrink. This suggests that the new peptide/protein/cellular biomaterial could lead to more effective testing of new drugs and treatments for ovarian cancer.”

Self-assembly is the process by which multiple components can organise into larger well-defined structures. Biological systems rely on this process to controllably assemble molecules and cells into complex and functional tissues with the remarkable properties that we know of such as the capacity to grow, replicate, and perform robust functions.

Associate Professor Daniela Loessner, from Monash University in Australia and co-author of the study says: “Currently, the gold standard for 3D cancer models is the commercially available MatrigelTm, a solubilized basement membrane extracted from mouse sarcoma. A major reason for Matrigel’s popularity is its capacity to enable cell-matrix interactions, which promote the growth of cancer and stromal cells into aggregates known as spheroids. However, it lacks control in mimicking the tumour microenvironment due to its batch variability, undefined composition, and animal origin. These features are important limitations to effectively screen and develop new treatments for cancer. Our research has demonstrated the capacity to engineer a 3D matrix that can serve as a complex, yet controllable, alternative to Matrigel.”

###

Media Contact
Jane Icke
[email protected]

Tags: BiotechnologycancerCell BiologyMedicine/HealthMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking the Language of Molecules

Tracking the Language of Molecules

August 22, 2025
Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BeginNGS® Newborn Genome Sequencing Program Expands Global Reach Through Collaboration with Sidra Medicine in Qatar

Innovative Tool Uncovers Key Targets to Enhance CAR NK Cell Therapy Effectiveness

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.