• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Forsyth researchers demonstrate how changing the stem cell response to inflammation may reverse periodontal disease

Bioengineer by Bioengineer
October 2, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Matthew Modoono

Periodontal disease, also known as gum disease, is a serious infection that affects nearly 50 percent of Americans aged 30 years and older. If left unchecked, periodontal disease can destroy the jawbone and lead to tooth loss. The disease is also associated with higher risk of diabetes and cardiovascular disease.

The current treatment for periodontal disease involves opening the infected gum flaps and adding bone grafts to strengthen the teeth. But in new research published recently in the journal Frontiers in Immunology, Forsyth Institute scientists have discovered that a specific type of molecule may stimulate stem cells to regenerate, reversing the inflammation caused by periodontal disease. This finding could lead to the development of new therapeutics to treat a variety of systemic diseases that are characterized by inflammation in the body.

For the study, Dr. Alpdogan Kantarci, his PhD student Dr. Emmanuel Albuquerque, and their team removed stem cells from previously extracted wisdom teeth and placed the stem cells onto petri dishes. The researchers then created a simulated inflammatory periodontal disease environment in the petri dishes. Next, they added two specific types of synthetic molecules called Maresin-1 and Resolvin-E1, both specialized pro-resolving lipid mediators from omega-3 fatty acids. The scientists found that Mar1 and RvE1 stimulated the stem cells to regenerate even under the inflammatory conditions.

“Both Maresin-1 and Resolvin-1 reprogrammed the cellular phenotype of the human stem cells, showing that even in response to inflammation, it is possible to boost capacity of the stem cells so they can become regenerative,” said Dr. Kantarci, Associate Member of Staff at the Forsyth Institute.

This finding is important because it allows scientists to identify the specific protein pathways involved in inflammation. Those same protein pathways are consistent across many systemic diseases, including periodontal disease, diabetes, heart disease, dementia, and obesity.

“Now that we understand how these molecules stimulate the differentiation of stem cells in different tissues and reverse inflammation at a critical point in time, the mechanism we identified could one day be used for building complex organs” said Dr. Kantarci. “There is exciting potential for reprogramming stem cells to focus on building tissues.”

###

Media Contact
Alexandra Nicodemo
[email protected]

Original Source

https://www.forsyth.org/news/forsyth-researchers-demonstrate-how-changing-the-stem-cell-response-to-inflammation-may-reverse-periodontal-disease/

Related Journal Article

http://dx.doi.org/10.3389/fimmu.2020.585530

Tags: BiochemistryDentistry/Periodontal DiseaseMedicine/HealthMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Brain Area 46: The Hub of Emotion Regulation in Marmosets

August 22, 2025
BeginNGS® Newborn Genome Sequencing Program Expands Global Reach Through Collaboration with Sidra Medicine in Qatar

BeginNGS® Newborn Genome Sequencing Program Expands Global Reach Through Collaboration with Sidra Medicine in Qatar

August 22, 2025

A Decade of Migrasome Research: Biogenesis, Functions, Diseases

August 22, 2025

Microhaplotype Panel Advances Brazilian Human Identification

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Area 46: The Hub of Emotion Regulation in Marmosets

New Insights into the Cumulative HBsAg/HBV DNA Ratio in Immune-Tolerant Hepatitis B Patients

Anti-PD-1 Boosts Gastric Cancer with Hepatitis B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.