• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovery of microbes with mixed membranes sheds new light on early evolution of life

Bioengineer by Bioengineer
September 17, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Marianne Baas

Changing skins

Cells are surrounded by a layer of membrane lipids that protect them from changes in their environment such as temperature, much in the same way that our skin changes when we are cold or exposed to the sun. Lead author and NIOZ senior scientist Laura Villanueva explains why they make such interesting biomarkers. ‘When a cell dies, these lipids preserve like fossils and hold ancient-old information on Earths’ early environmental conditions.’ Our tree of life includes small and simple cells (Bacteria and Archaea) and more complex cells (Eukaryotes), including animals and humans. Bacteria and Eukaryotes share a similar lipid membrane. Looking at Archaea, their ‘skin’ or membrane looks very different and is primarily designed to help these microorganisms to survive in extreme environments. Villanueva: ‘This “lipid divide”, or difference in membranes between Bacteria and Eukaryotes on the one hand and Archaea on the other, is believed to have happened after the emergence of Bacteria and Archaea from the last universal cellular ancestor (LUCA).’

Missing piece hidden in the deep Black Sea

The leading theory is that Eukaryotes evolved from a symbiosis event between archaeal and bacterial cells in which the archaeal cell was the host. But how does this work when their ‘skins’ are so different and share no sign of common ancestry? Villanueva: ‘To explain the creation of more complex life-forms, the archaeal membrane must have made a switch to a bacterial type membrane. Such a switch likely needed a transition period in which the two membrane types were mixed.’ However, mixed lipid membranes had never been found in microbes until the team of Villanueva made an unexpected discovery in de deep waters of the Black Sea.

Villanueva: ‘We found a possible missing piece of this puzzle in the Black Sea. Here, an abundant group of bacteria thrive in the deep-sea, absent of oxygen and with high sulfide concentration. We discovered that the genetic material of this group did not only carry pathway genes for bacterial lipids but archaeal ones as well.’ The peculiarity was also found in the genetic material of other, closely related Bacteria and supports the idea that this ability to create ‘mixed’ membranes is more widespread than previously thought. This discovery sheds new light on the evolution of all cellular life forms and may have important consequences for the interpretation of archaeal lipid fossils in the geological record and paleoclimate reconstructions.

###

The research team from the Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University have published their findings in the prestigious ISME Journal.

Villanueva, L., von Meijenfeldt, F.A.B., Westbye, A.B., Yadav, S., Hopmans, E.C., Dutilh, B.E., Sinninge Damsté, J.S. 

Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. 

 ISME J (2020)

Media Contact
NIOZ Communicatie
[email protected]

Original Source

https://www.nioz.nl/en/news/discovery-of-microbes-with-mixed-skins-sheds-new-light-on-early-evolution-of-life

Related Journal Article

http://dx.doi.org/10.1038/s41396-020-00772-2

Tags: BiochemistryBiologyCell BiologyClimate ChangeEcology/EnvironmentEvolutionGeneticsMarine/Freshwater BiologyMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Tool Provides Profound Insights into the Immune System

October 9, 2025
blank

Photonic Energy’s Role in Nostoc commune’s Cr (VI) Response

October 9, 2025

Programmable Proteins Harness Logic to Revolutionize Targeted Drug Delivery

October 9, 2025

Genomic Insights Boost Duck Growth and Feed Efficiency

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1159 shares
    Share 463 Tweet 289
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Newborn Genomic Screening Expands Lifesaving Diagnostic Potential

Genomic Subgroups in Undifferentiated Endometrial Cancer

AI-Powered Microwave System Tracks Brain Pressure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.