• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists updated genome editing technology

Bioengineer by Bioengineer
September 16, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers compared their developed carriers for delivery of genome editing (GE) tools with other available analogues.

IMAGE

Credit: Peter the Great St.Petersburg Polytechnic University

Researchers from Peter the Great St.Petersburg Polytechnic University (SPbPU) in collaboration with colleagues from the Pavlov University, ITMO University, and the University of Hamburg compared their developed carriers for delivery of genome editing (GE) tools with other available analogues. The research of current studies were published in the in the journal Biomaterials.

The international scientific group considers the delivery of genome editing tools to organs and tissues and compared their work with the existing analogs. Genome editing tools allow to edit or modify DNA (in particular, the CRISPR/Cas9 technology uses the principle of “molecular scissors”: the complex binds to the required area of the genome, where the Cas9 protein cuts the DNA. The cell tries to close the gap. If we provide the required genetic material at that moment, the cell will turn it into your DNA).

“These scissors should be properly delivered to the cells responsible for disease development. Our research team developed a polymeric carrier with a number of properties, which can be loaded with several types of genetic material. It is very important for genome editing. The carrier delivers the genetic material to organs where cell modifications is required for the treatment. The genetic material is a released into these cells”, – says Alexander Timin, head of the Laboratory for microencapsulation and controlled delivery of biologically active compounds at St. Petersburg Polytechnic University.

He added, currently, the gene therapy is actively developing and, in this regard, it is required to apply genome editing tools, which use two RNA and DNA molecules. It should be delivered by single carrier. It is a very urgent task.

In the course of the study, various methods of genetic material delivery were considered and compared with existing analogues (technologies developed by the leading universities in the United States and China). The research team analyzed various parameters: editing efficiency, delivery efficiency, and carrier toxicity. Scientists identified, that their own development has a number of advantages in some parameters compared to the corresponding counterparts.

“The developed carrier is highly efficient, low toxic and obtains surface modification with various targeting ligands. In addition, the technology is able to protect the genetic material in the body from the premature degradation due to various biological factors, thus preserving all the properties and genetic effects. Currently, the development is at the stage of pre-clinical studies and is being tested on laboratory animals “, – mentioned Igor Radchenko, director of the “RASA-Polytech” center.
It should be noted that “RASA-Polytech” center was initially founded by Prof. Gleb B. Sukhorukov of QMUL. Now this center is rapidly growing together with new young researchers, who continue to intensively collaborate with Prof. Sukhorukov.

As for the technological mechanism, in case of oncological diseases, researchers use microinjections to insert the carriers directly into the tumor, or to inject the carriers into the bloodstream. In order to reach the required organ, the “beacons” were attached to the carriers. These are antibodies, which are able to bind to receptors on the surface of the cells affected by pathogens.

In the future, the researchers plan to conduct an experiment jointly with colleagues from Belgium, to test the developed technology in the case of HIV infection.

###

Media Contact
Raisa Bestugina
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.biomaterials.2020.120282

Tags: Biomedical/Environmental/Chemical EngineeringcancerMaterialsMedicine/HealthNanotechnology/MicromachinesPharmaceutical ChemistryPharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPolymer ChemistryVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

Tetraspanins: Key Players in Organ Fibrosis Therapy

September 28, 2025

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

September 28, 2025

Factors Behind Nurse Migration: Insights from Iranian Students

September 28, 2025

Engineering Macrophages for Precision Cancer Therapy

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Cacna1e Splice Variants’ Functional Diversity

Tetraspanins: Key Players in Organ Fibrosis Therapy

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.