• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists map freshwater transport in the Arctic Ocean

Bioengineer by Bioengineer
September 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Alexander Osadchiev et al./Scientific Reports

The Ob, Yenisei, and Lena rivers flow into the Kara and Laptev seas and account for about half of the total freshwater runoff to the Arctic Ocean. The transport and transformation of freshwater discharge in these seas have a large impact on ice formation, biological productivity, and many other processes in the Arctic. Researchers from Shirshov Institute of Oceanology and MIPT have investigated the spreading of large river plumes — that is, freshened water masses formed as a result of river runoff mixing with ambient saltwater — in the Russian Arctic seas. The findings were published in Scientific Reports.

The Ob, Yenisei, and Lena rivers provide a huge volume of freshwater discharge to the Kara and Laptev seas. The total annual runoff from these three rivers is estimated at 2,300 cubic kilometers. The majority of this volume is discharged into the sea during the ice-free season, forming the Ob-Yenisei plume and the Lena plume, which are the largest in the Arctic and among the largest in the world ocean.

“River plumes are freshened water masses that form near river mouths and spread at sea as a relatively thin surface layer. River plume dynamics are mostly determined by wind forcing and river discharge rate,” explained Alexander Osadchiev, a co-author of the study and a senior researcher at Shirshov Institute of Oceanology.

Previous studies revealed that in the absence of strong wind, the Coriolis force and the density gradient between the plume and the ambient seawater cause alongshore spreading of river plumes. That process induces a large-scale eastward freshwater transport that is observed in the Arctic Ocean along large segments of the Eurasian and North American shores. This feature strongly affects ice conditions in the region.

The study described in this article revealed how the Ob-Yenisei plume spreads from the Kara Sea to the Laptev Sea through the Vilkitsky Strait, which is located between the Severnaya Zemlya archipelago and the Taymyr Peninsula. The paper also addresses the Lena plume and its spreading from the Laptev Sea into the East Siberian Sea through the Laptev and Sannikov straits.

The authors demonstrated that continental runoff from the Ob and Yenisei mostly accumulates in the Kara Sea during the ice-free season. Topographic barriers — namely, the western coast of the Taymyr Peninsula and the Severnaya Zemlya archipelago — generally hinder eastward spreading of the Ob-Yenisei plume to the Laptev Sea. This process occurs only as a result of very specific wind forcing conditions.

On the contrary, the Lena plume is almost constantly spreading to the western part of the East Siberean Sea as a large-scale water mass, forming a narrow freshened coastal current in the eastern part of this sea. Known as the Siberian Coastal Current, it is intensified by freshwater runoff from the large Indigirka and Kolyma rivers and flows farther eastward to the Chukchi Sea.

“Freshwater from the rivers flowing into the Arctic Ocean very slowly mixes with seawater, therefore the large river plumes are very stable. As we revealed, freshwater can spread eastward across hundreds of kilometers, forced by local winds. The recent findings enable us to assess freshwater transport between the Kara, Laptev, and East Siberian seas during the ice-free season,” added Associate Professor Sergey Shchuka, deputy chair of ocean thermohydromechanics at MIPT.

The new data are crucial for understanding ice formation, biological productivity, and many other processes in the Arctic affected by continental runoff.

###

The study also featured researchers from Tomsk Polytechnic University and Ilyichov Pacific Oceanological Institute. This research was supported by the Russian Ministry for Higher Education and Science, the Russian Government, the Russian Foundation for Basic Research, the Russian Science Foundation, the Russian Presidential Grant, and Tomsk Polytechnic University.

Media Contact
Varvara Bogomolova
[email protected]

Original Source

https://mipt.ru/english/news/scientists_map_freshwater_transport_in_the_arctic_ocean

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-70096-w

Tags: Earth ScienceEnergy SourcesGeographyHydrology/Water ResourcesPaleontology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.