• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Older women with type 2 diabetes have different patterns of blood use in their brains

Bioengineer by Bioengineer
September 8, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pattern relates to sensory motor problems in hands, feet

IMAGE

Credit: University of Houston

A University of Houston researcher is reporting that the brains of older women with Type 2 diabetes do not use as much oxygenated blood as those who don’t have the disease. The research is the first to point to changes in blood use in the brain as the primary reason for diabetes-related deficits in motor function. It also furthers the understanding of sensory and motor symptoms as a precursor to developing dementia and Alzheimer’s diseases, both of which are linked to diabetes.

“It’s a pretty significant finding. Typically, when someone presents with a sensory or motor issue along with Type 2 diabetes mellitus, the assumption is that it’s the result of peripheral nerve damage in the hands and feet,” said Stacey Gorniak, associate professor in the UH Department of Health and Human Performance and director of the Center for Neuromotor and Biomechanics Research. Gorniak published her findings in the journal Neurophotonics.

Until now there has been no assumption that something is going on with respect to brain function that is affecting sensory and motor functions in persons living with Type 2 diabetes.

“Emerging evidence has suggested that factors outside of nerve damage due to Type 2 diabetes mellitus, such as impaired cortical blood use, contribute significantly to both sensory and motor deficits in people with diabetes,” reports Gorniak.

Nearly 24% of the 40 million people in the United States over the age of 60 live with Type 2 diabetes. Problems with hands, fingers and feet are common side effects of the disease and can lead to a loss of independent living and decline in quality of life.

Gorniak’s testing method is unique. Rather than using a typical MRI to monitor the use of oxygenated blood, she opted to use a technique called functional near infrared spectroscopy (fNIRS). The fNIRS is a method that delivers infrared light into the scalp to measure use of both oxygenated and unoxygenated blood use by the brain. This technique differs from MRI as MRI cannot measure oxygenated blood use. The fNIRS method can be used on persons who cannot have an MRI.

She tested a group of 42 post-menopausal women, over 60, half of whom had Type 2 diabetes, and asked them to perform various exercises with their hands. She chose this group because they are generally at the highest risk for diabetes, heart disease and dementia.

“Our work demonstrates that motor changes in people with diabetes occur independent of sensory impairment and that these changes are unrelated to disease duration and severity. Our data point towards other factors such as changes in muscle and reduced function of the cortex as underlying mechanisms for problems in sensory and motor functions,” Gorniak reports.

Her findings, she said, opens research possibilities for other groups of people with the disease, in hopes of finding a way to therapeutically avoid the negative health effects of diabetes.

“We need to see what this looks like in a larger population, including men, and then we can start developing treatments or different ways we could potentially stop these negative impacts of Type 2 diabetes,” said Gorniak.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://www.uh.edu/news-events/stories/2020/september-2020/09082020-stacy-gorniak-diabetes-menopausal-women-brain-blood.php

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiotechnologyDiabetesMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Discovering New Proteomic Biomarkers for Hypertension

Discovering New Proteomic Biomarkers for Hypertension

October 10, 2025

Assessing Health Technology Implementation in Iran: A Political Insight

October 10, 2025

Gene Expression Scores Predict Aging Outcomes

October 10, 2025

Tackling Inappropriate Prescribing Cascades for Safer Meds

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1201 shares
    Share 480 Tweet 300
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    84 shares
    Share 34 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering New Proteomic Biomarkers for Hypertension

Assessing Health Technology Implementation in Iran: A Political Insight

Gene Expression Scores Predict Aging Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.