• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Out of sync: Ecologists report climate change affecting bee, plant life cycles

Bioengineer by Bioengineer
August 19, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In NSF-funded community-wide assessment of data collected from sites around Colorado’s Rocky Mountain Biological Laboratory, bee emergence is advancing with snowmelt timing, but bee phenology is less sensitive than flower phenology

IMAGE

Credit: David Inouye, RMBL

LOGAN, UTAH, USA – Bees and flowers seem inseparable harbingers of spring, but what happens when pollinators emerge later than their sources of nectar and pollen? Reporting on the first community-wide assessment of 67 bee species of the Colorado Rockies, ecologists Michael Stemkovski of Utah State University and Rebecca Irwin of North Carolina State University say “phenological mismatch,” changing timing of life cycles between bees and flowers, caused by climate change, has the potential to disrupt a mutually beneficial relationship.

“We analyzed time-series abundance data collected at 18 sites around the Rocky Mountain Biological Laboratory (RMBL) in the Elk Mountains of western Colorado during a nine-year, National Science Foundation-funded bee monitoring project,” says Stemkovski, doctoral student in USU’s Department of Biology and the USU Ecology Center.

He and Irwin, senior author, along with colleagues from RMBL, University of Texas at Austin, Imperial College London, University of Manitoba, USDA-ARS Pollinating Insects Research Unit at USU, Central Texas Melittological Institute, Royal Saskatchewan Museum, Texas A&M University, Florida State University and University of Maryland, published findings in the August 19, 2020 issue of Ecology Letters.

“We find bee emergence timing is advancing with snowmelt timing, but bee phenology – timing of emergence, peak abundance and senescence – is less sensitive than flower phenology,” says Irwin, professor of applied ecology at NCSU. “Given global concerns about pollinator declines, the research provides important insight into the potential for reduced synchrony between flowers and their pollinators under climate change.”

Previous studies focused primarily on temperature, Stemkovski says, but this study probed the effects of topography and bee species traits, as well.

“Elevation played a large role in when bees start foraging, as well as the bees’ functional traits, such as whether bees nested below or above ground, and the life stage in which they overwintered,” he says. “We found all of these factors predicted bee emergence, but the most important factor was snowmelt timing.”

If bees begin foraging later than spring plants reach their flowering peak, consequences could be reduced abundance of pollinators, from limited sustenance, and reduced abundance of plants, from limited pollination.

“In the short-term, we expect mutualist species to suffer fitness losses,” Stemkovski says. “In the long-term, bees and plants may be able to adapt and reestablish some synchrony, unless climate change outpaces the rate of adaptation.”

###

Media Contact
Michael Stemkovski
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/ele.13538

Tags: BiologyClimate ChangeEcology/EnvironmentEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

No Heritability Found in Extra-Pair Mating Behavior

September 16, 2025
blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Sarcopenia Risk in Israel’s Older Population

Stigma in Notes Hinders Substance Disclosure in Pregnancy

No Heritability Found in Extra-Pair Mating Behavior

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.