• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The structural basis of Focal Adhesion Kinase activation on lipid membranes unravelled

Bioengineer by Bioengineer
August 11, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: CIB-CSIC

A research team led by Daniel Lietha has just published in The EMBO Journal the mechanistic details of the activation of the Focal Adhesion Kinase (FAK) on lipid membranes. Lietha started this research during his work at the Spanish National Cancer Research Centre (CNIO) and has culminated it in his current institution, the Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC).

FAK is a key protein ensuring controlled cell adhesion, proliferation, migration and survival which in cancer is often responsible for aberrant cell invasion leading to metastatic cancers. In the cytosol, FAK adopts an autoinhibited state but is activated upon recruitment into focal adhesions, yet how this occurs or what induces structural changes was unknown.

Lietha’s group have demonstrated that FAK is activated when it is localised to the cell membrane where it interacts with specific phosphoinositide lipids. Now, the high-resolution structure of an oligomeric form of FAK bound to a lipid membrane has been obtained using Cryo-Electron Microscopy. The analysis of the structure shows that initial binding of FAK to the membrane causes steric clashes that release the kinase domain from autoinhibition, allowing it to undergo a large conformational change and interact itself with the membrane in an orientation that places the active site towards the membrane.

The structure also reveals that several interfaces align in the rearranged conformation to allow oligomerization of FAK on the membrane with a key phosphorylation site exposed, leading to autophosphorylation and, in turn, activation of FAK. Molecular dynamics simulations were carried out to understand the mechanism and dynamics of the process of autophosphorylation and subsequent activation on the membrane.

To validate the computational model, different mutants of FAK have been generated carrying mutations at the observed interfaces. Extensive biochemical experiments have been carried out to evaluate how the different mutations affect lipid binding, FAK autophosphorylation and activation. Moreover, how the mutations affect FAK function in cancer cells was also studied revealing that the uncovered mechanism is key for cancer cell invasion and proliferation.

###

This work is the result of an international collaboration between the CIB Margarita Salas and researchers at the Spanish National Cancer Research Centre (Madrid, Spain), Center for Cellular Imaging and NanoAnalytics, Biozentrum (University of Basel, Switzerland), Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine (University of Edinburgh, United Kingdom), Heidelberg Institute for Theoretical Studies and Interdisciplinary Center for Scientific Computing (Heidelberg, Germany).

The research has been funded by the Spanish Ministry of Science and Innovation, the National Institute of Health Carlos III, the Spanish Ministry of Education, Culture and Sports, the Werner-Siemens Foundation, the University of Basel, the Swiss National Science Foundation, Cancer Research UK, the Klaus Tschira Foundation, the Deutsche Forschungsgemeinschaft, the State of Baden-Wuertenberg, the Carl Zeiss Foundation, the European Regional Development Fund, the European Social Fund, the Spanish National Research Council, and the Autonomous Region of Madrid.

Reference article: Structural basis of Focal Adhesion Kinase activation on lipid membranes. Iván Acebrón et al (EMBO J, 2020). DOI: https://www.embopress.org/doi/10.15252/embj.2020104743

Media Contact
Vanessa Pombo
[email protected]

Original Source

https://www.cnio.es/en/news/publications/the-structural-basis-of-focal-adhesion-kinase-activation-on-lipid-membranes-unravelled/

Related Journal Article

http://dx.doi.org/10.15252/embj.2020104743

Tags: BiologyBiomechanics/BiophysicscancerCell BiologyGeneticsMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025
Serve with a Spectacular Swerve: The Science Behind Spin and Precision

Serve with a Spectacular Swerve: The Science Behind Spin and Precision

August 19, 2025

Enhanced Trap Visualization: Full-Dimensional Imaging Advances Solar Cell Efficiency

August 19, 2025

Chefs and Scientists Collaborate to Explore Microbiology Through Kombucha and Kimchi

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Creating ZnCr2S4 and ZnCr2S4/rGO for Energy Storage

New Study Reveals Early Heart Dysfunction in Young Adults with Bipolar Disorder

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.