• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Space invaders as MOFs act as liquids

Bioengineer by Bioengineer
August 10, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST

Innovative materials called metal organic frameworks (MOFs) could become much more versatile following research that shows that they can be manipulated as liquids.

MOFs are highly porous crystalline solids with metal ions or metal clusters joined by organic (carbon-based) linker groups. Varying these parts can create a huge variety of solids with internal pores able to trap selected molecules or catalyze chemical reactions.

“These crystalline materials are difficult to process, but we have developed a way to solubilize them,” says Anastasiya Bavykina of the research team at the KAUST Catalysis Center.

The KAUST researchers produced membranes composed of the MOF embedded in a polymer, which they say can achieve outstanding performance in the challenging separation of propylene gas from propane.

“This is revolutionary,” says Bavykina. Propylene is a key feedstock for the chemical industry; it is used to make the polymer polypropylene used in many products. It can also be converted into other polymers and industrially useful chemicals, but it must first be separated from the propane it generally comes mixed with.

“If the current energy-intensive propane-propylene separation technologies, based on distillation, could be replaced by our MOF membrane technology, then this could save about 0.1 percent of global energy consumption,” co-author Shuvo Datta points out.

One challenge for the team was to make a crystalline MOF behave as a porous liquid. The team discovered how to modify the surface of relatively large MOF nanoparticles with suitable chemical groups. This “surface functionalization” allowed the nanoparticles to form stable dispersions in a liquid solvent.

Another challenge was to ensure that the internal pores of the MOFs remain empty and able to take up and allow permeation of desired gas molecules. The porous spaces and the solvent molecules must be carefully controlled to prevent the solvent from filling the gaps.

“It is also not easy to actually demonstrate that a liquid is porous,” Bavykina adds. The researchers had to develop a novel experimental setup to achieve this.

The liquid phase MOF dispersions can separate gas mixtures that are bubbled through them, but the team achieved greater flexibility by incorporating a MOF into their flexible and robust polymer membranes. This allowed a continuous flow system to run for up to 30 days, producing 97 percent pure propylene from a 50/50 propane-propylene mixture that was effectively filtered by the membrane.

The team now want to scale up their procedure to demonstrate its commercial potential. They will also seek to apply it to other important industrial gas separation processes.

###

Media Contact
Carolyn Unck
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41563-020-0764-y

Tags: Chemistry/Physics/Materials SciencesEnergy SourcesIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring ICU Nurses’ CRRT Downtime Management Insights

New Paradigm in Bacteroidota Protein Biogenesis

Link Between AIP and T2DM in NAFLD Patients

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.