• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover how plants distinguish beneficial from harmful microbes

Bioengineer by Bioengineer
August 7, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Christina Krönauer and Damiano Lironi, Aarhus University

Legume plants fix atmospheric nitrogen with the help of symbiotic bacteria, called Rhizobia, which colonize their roots. Therefore, plants have to be able to precisely recognize their symbiont to avoid infection by pathogenic microbes. To this end, legumes use different LysM receptor proteins located on the outer cell surface of their roots. In the study published in Science, an international team of researchers led by Aarhus University show that pathogenic (chitin) or symbiotic signalling molecules (Nod factors) are recognized by small molecular motifs on the receptors that direct the signalling output towards either antimicrobial defence or symbiosis.

All land plants have LysM receptors that ensure detection of various microbial signals, but how a plant decides to mount a symbiotic or an immune response towards an incoming microbe is unknown. “We started by asking a basic and, maybe at start, naïve question: Can we identify the important elements by using very similar receptors, but with opposing function as background for a systematic analysis?” says Zoltán Bozsoki. “The first crystal structure of a Nod factor receptor was a breakthrough. It gave us a better understanding of these receptors and guided our efforts to engineer them in plants.” Kira Gysel adds.

The study combines the structure-assisted dissection of defined regions in LysM receptors for biochemical experiments and in planta functional analysis. “To really understand these receptors, we needed to work closely together and combine structural biology and biochemistry with the systematic functional tests in plants,” says Simon Boje Hansen. By using this approach, the researchers identified previously unknown motifs in the LysM1 domain of chitin and Nod factor receptors as determinants for immunity and symbiosis. “It turns out that there are only very few, but important, residues that separate an immune from a symbiotic receptor and we now identified these and demonstrate for the first time that it is possible to reprogram LysM receptors by changing these residues,” says Kasper Røjkjær Andersen.

The long-term goal is to transfer the unique nitrogen-fixing ability that legume plants have into cereal plants to limit the need for polluting commercial nitrogen fertilizers and to benefit and empower the poorest people on Earth. Simona Radutoiu concludes, “We now provide the conceptual understanding required for a stepwise and rational engineering of LysM receptors, which is an essential first step towards this ambitious goal”.

###

Media Contact
Simona Radutoiu
[email protected]

Original Source

https://mbg.au.dk/en/news-and-events/news-item/artikel/researchers-discover-how-plants-distinguish-beneficial-from-harmful-microbes/

Related Journal Article

http://dx.doi.org/10.1126/science.abb3377

Tags: Agricultural Production/EconomicsBiochemistryBiologyBiotechnologyFertilizers/Pest ManagementGeneticsMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Enhancing Rabbit Growth: Acoustic and Bioactive Supplement Synergy

December 22, 2025
Silencing SlERF.F5 Enhances Stress Tolerance in Tomato

Silencing SlERF.F5 Enhances Stress Tolerance in Tomato

December 22, 2025

Comprehensive Analysis of DOF Gene Family in Pea

December 22, 2025

Engineering Microbes for Sustainable Microplastic Breakdown

December 22, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Core Competencies of OR Nurses in Maritime Emergencies

Factors Behind Pediatric IV Cannula Complications in Ethiopia

Enhancing Rabbit Growth: Acoustic and Bioactive Supplement Synergy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.