• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

St18 is a negative regulator of VEGF

Bioengineer by Bioengineer
July 15, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kenta Maruyama

Various pro-inflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS) are known to activate NF-kB. NF-kB is a master regulator of inflammation and induces pro-inflammatory cytokines. Although LPS-induced pro-inflammatory cytokiens are indispensable for host defense against pathogens, dysregulated production can lead to septic shock. Septic shock is the most common cause of death in intensive care unit. Pro-inflammatory cytokines in a systemic scale inflammatory response result in increased capillary permeability and low blood pressure. However, despite injection of anti-pro-inflammatory cytokine antibody into human septic shock, mortality rates remain high. Other than pro-inflammatory cytokines, macrophages can secrete vascular endothelial growth factor (VEGF) in response to LPS. VEGF was initially described as a stimulator of endothelial permeability. VEGF was subsequently reported to promote proliferation and survival of endothelial cells, and is now thought to be the pivotal regulator of angiogenesis and vascular leakage. Notably, VEGF exaggerates septic inflammation, and human serum VEGF level can be used as a predictor of septic prognosis. Thus, not only pro-inflammatory cytokines but also VEGF play critical roles for septic pathophysiology. Recently, Suppression of tumorigenicity 18 (St18) was discovered as a putative regulator of pro-inflammatory cytokine signaling. St18 is also reported as a candidate tumor suppressor in human breast tumors, because its expression is significantly down regulated in these cells compared to normal breast tissues. Conversely, St18 expression is up regulated in liver cancers, indicating an oncogenic function of this gene. Despite the pleiotropic functions of St18 in cancers, little is known about its functions in myeloid lineages. Maruyama and colleagues discovered that St18 is expressed in myeloid cells. Unexpectedly, mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF concentrations, and pharmacological inhibition of VEGF signaling rescued the high mortality rate of septic shock. Mechanistically, St18 bound to Sp1 and attenuated its activity, leading to the suppression of Sp1 target gene VEGF. Thus, myeloid St18-mediated gene regulation may be a promising strategy for the development of therapeutics to control VEGF-associated disorders.

###

Media Contact
Kenta maruyama
[email protected]

Original Source

https://www.cell.com/cell-reports/fulltext/S2211-1247(20)30887-1

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2020.107906

Tags: cancerCell BiologyMedicine/HealthMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Deregulation of NKX3.1 and AURKA in Prostate Cancer

November 10, 2025

Sphingolipid Metabolism: A Target in Triple-Negative Breast Cancer

November 10, 2025

New Study Empowers Eczema Patients to Decide Their Own Bathing Frequency

November 10, 2025

Despite Interventions, Children’s Dental Health Remains Poor

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deregulation of NKX3.1 and AURKA in Prostate Cancer

Sphingolipid Metabolism: A Target in Triple-Negative Breast Cancer

TFAP2C Boosts CST1, Promoting Breast Cancer Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.