• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Boosting immune memory could reduce cancer recurrence

Bioengineer by Bioengineer
July 15, 2020
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Pittsburgh

PITTSBURGH, July 15, 2020 – Blocking a newly identified “immune memory checkpoint” in immune cells could improve immunotherapy and help prevent cancers from recurring, according to new findings in mice and human samples by researchers at the UPMC Hillman Cancer Center and the University of Pittsburgh School of Medicine. The research was published this week in Nature Immunology.

Immunotherapy drugs that harness the body’s own immune system to fight cancer have revolutionized the treatment of many cancers. They work by blocking checkpoint inhibitor proteins like PD1, removing the brakes from cancer-killing T cells in the immune system. However, only about a third of patients respond to these drugs.

“There is still much work to be done to improve cancer immunotherapy because only a small group of people benefit, and even among those, we see many tumors relapsing,” said Dario A.A. Vignali, Ph.D., who holds the Frank Dixon Chair in Cancer Immunology at Pitt’s School of Medicine and is the co-leader of the Cancer Immunology and Immunotherapy program at the UPMC Hillman Cancer Center. “Our findings point to an important new biological anti-tumor mechanism that we can exploit to provide durable, long-term immune response against tumors.”

Vignali and his colleagues discovered that a protein called Neuropilin-1 (NRP1) plays an important role in suppressing immune responses to cancer.

“We knew NRP1 was present on the surface of other T cells, but we wondered whether it somehow altered the function of the killer T cells,” said Chang “Gracie” Liu, Ph.D., a postdoctoral researcher in Vignali’s lab and first author of the publication. “We thought it might function like any other immune checkpoint molecule and that blocking it would prevent tumors from growing.”

Liu and her colleagues created a genetically modified mouse that had NRP1 removed specifically from the surface of only killer T cells. When they grafted tumor cells to this mouse model, they expected that the tumors would not grow or grow more slowly when compared to normal animals, as they had seen when blocking other checkpoint proteins. Instead, they saw no difference at all.

“We were a bit disappointed and thought we had hit a dead end because it looked like removing NRP1 did not impact anti-tumor immunity,” said Liu. “But instead of giving up, we asked a different question — does NRP1 change the capability of the immune system to remember the tumor?”

They removed the tumor, waited and grafted cancer cells again in a different location, mimicking how a tumor might come back in a patient who had surgery. They saw a dramatic effect. Mice that had NRP1 genetically deleted on killer T cells were better protected against the secondary tumor and responded more positively to anti-PD1 immunotherapy when compared to normal mice.

Further experiments revealed that neuropilin was controlling the fate of how T cells develop and establish immune memory. Having NRP1 caused the killer T cells to become exhausted and ineffective in fighting cancer cells, particularly long-term, while removing NRP1 resulted in T cells having an increased immune memory — the ability of the immune response to respond more potently when it “sees” a tumor again.

These findings in mice also correlated with studies of T cells isolated from the blood of patients with skin cancer or head and neck cancer. Patients with advanced stage head and neck cancer had higher levels of NRP1 on a subset of “memory” killer T cells and fewer of these cells compared to those with earlier stage disease. In patients with advanced skin cancer treated with various immunotherapies, higher NRP1 levels on killer T cells were associated with a poorer response to treatment and a smaller pool of memory T cells.

“This is a completely new area of understanding of how anti-tumor immunity is controlled and will present new therapeutic opportunities to promote and enhance a more durable, long-term anti-tumor response in cancer patients,” says Vignali.

Drugs that target NRP1 are already being tested in the clinic in combination with anti-PD1 immunotherapies, and these clinical trials will reveal much more about the role of immune memory in fighting cancer, says Vignali. “This is why persistence pays off. When our initial hypothesis turned out to be incorrect, we kept pursuing other possibilities and ended up with an important new discovery.”

###

Additional authors on the study included Ashwin Somasundaram, M.D., Angela M. Gocher, Ph.D., Andrea L. Szymczak-Workman, Ph.D., Kate M. Vignali, Ellen N. Scott, Daniel P. Normolle, Ph.D., Robert L. Ferris, M.D., Ph.D., Tullia C. Bruno, Ph.D., Creg J. Workman, Ph.D., all of Pitt and the UPMC Hillman Cancer Center; Sasikanth Manne, Ph.D., and E. John Wherry, Ph.D., of the University of Pennsylvania, and Evan J. Lipson, M.D., of Johns Hopkins University.

This work was supported by National Institutes of Health grants CA203689, AI108545, AI105343, AI117950, AI082630, AI112521, 421 AI115712, AI108545, CA210944, CA082084, CA247004-01, CA047904, CA097190, CA006973, OD011925-01, OD019942-01, CA047904 and grants from Stand Up To Cancer, Parker Institute for Cancer Immunotherapy, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Barney Family Foundation, Moving for Melanoma of Delaware and the Laverna Hahn Charitable Trust.

Vignali has submitted patents covering NRP1 that are licensed or pending. A complete listing of the authors’ conflicts of interest can be found online with the study.

To read this release online or share it, visit https://www.upmc.com/media/news/071520-liu-vignali-nature-immunology.

About UPMC Hillman Cancer Center

UPMC Hillman Cancer Center, ranked 7th by U.S. News & World Report in 2019 for excellence in cancer care, is the region’s only National Cancer Institute-designated Comprehensive Cancer Center and is one of the largest integrated community cancer networks in the United States. Backed by the collective strength of UPMC and the University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center has nearly 70 locations throughout Pennsylvania and Ohio with cancer centers and partnerships internationally. The more than 2,000 physicians, researchers and staff are leaders in molecular and cellular cancer biology, cancer immunology, cancer virology, biobehavioral oncology, and cancer epidemiology, prevention, and therapeutics. UPMC Hillman Cancer Center is transforming cancer research, care, and prevention — one patient at a time.

http://www.upmc.com/media

Contact: Erin Hare

Mobile: 412-738-1097

E-mail: [email protected]

Contact: Cyndy Patton

Mobile: 412-415-6085

E-mail: [email protected]

Media Contact
Erin Hare
[email protected]

Original Source

https://www.upmc.com/media/news/071520-liu-vignali-nature-immunology

Related Journal Article

http://dx.doi.org/10.1038/s41590-020-0733-2

Tags: cancerCell BiologyGrants/FundingHealth CareImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

New Metabolic Inflammation Model Explains Teen Reproductive Issues

New Metabolic Inflammation Model Explains Teen Reproductive Issues

August 17, 2025
Mpox Virus Impact in SIVmac239-Infected Macaques

Mpox Virus Impact in SIVmac239-Infected Macaques

August 17, 2025

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

August 17, 2025

Genkwanin Glycosides Boost Glucose Uptake in Fat

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.