• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

For next-generation semiconductors, 2D tops 3D

Bioengineer by Bioengineer
July 13, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jang-sik Lee(POSTECH)

Netflix, which provides an online streaming service around the world, has 42 million videos and about 160 million subscribers in total. It takes just a few seconds to download a 30-minute video clip and you can watch a show within 15 minutes after it airs. As distribution and transmission of high-quality contents are growing rapidly, it is critical to develop reliable and stable semiconductor memories.

To this end, POSTECH research team has developed a memory device using a two-dimensional layered-structure material, unlocking the possibility of commercializing the next-generation memory device that can be stably operated at a low power.

POSTECH research team consisting of Professor Jang-Sik Lee of the Department of Materials Science and Engineering, Professor Donghwa Lee of the Division of Advanced Materials Science, Youngjun Park, and Seong Hun Kim in the PhD course succeeded in designing an optimal halide perovskite material (CsPb2Br5) that can be applied to a ReRAM*1 device by applying the first-principles calculation*2 based on quantum mechanics. The findings were published in Advanced Science.

The ideal next-generation memory device should process information at high speeds, store large amounts of information with non-volatile characteristics where the information does not disappear when power is off, and operate at low power for mobile devices.

The recent discovery of the resistive switching property in halide perovskite materials has led to worldwide active research to apply them to ReRAM devices. However, the poor stability of halide perovskite materials when they are exposed to the atmosphere have been raised as an issue.

The research team compared the relative stability and properties of halide perovskites with various structures using the first principles calculation2. DFT calculations predicted that CsPb2Br5, a two-dimensional layered structure in the form of AB2X5, may have better stability than the three-dimensional structure of ABX3 or other structures (A3B2X7, A2BX4), and that this structure could show improved performance in memory devices.

To verify this result, CsPb2Br5, an inorganic perovskite material with a two-dimensional layered structure, was synthesized and applied to memory devices for the first time. The memory devices with a three-dimensional structure of CsPbBr3 lost their memory characteristics at temperatures higher than 100 °C. However, the memory devices using a two-dimensional layered-structure of CsPb2Br5 maintained their memory characteristics over 140 °C and could be operated at voltages lower than 1V.

Professor Jang-Sik Lee who led the research commented, “Using this materials-designing technique based on the first-principles screening and experimental verification, the development of memory devices can be accelerated by reducing the time spent on searching for new materials. By designing an optimal new material for memory devices through computer calculations and applying it to actually producing them, the material can be applied to memory devices of various electronic devices such as mobile devices that require low power consumption or servers that require reliable operation. This is expected to accelerate the commercialization of next-generation data storage devices.”

###

This research was conducted with the support from the Future Materials Discovery Project and the Mid-career Researcher Program of the Ministry of Science and ICT and the National Research Foundation of Korea.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://www.postech.ac.kr/eng/for-next-generation-semiconductors-2d-tops-3d/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1002/advs.202001367

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025

HIRAID Framework Enhances Nurse and Patient Outcomes

October 4, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

HIRAID Framework Enhances Nurse and Patient Outcomes

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.