• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New bioink for cell bioprinting in 3D

Bioengineer by Bioengineer
July 13, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting

IMAGE

Credit: Magnus Johansson

A research group led by Daniel Aili, associate professor at Linköping University, has developed a bioink to print tissue-mimicking material in 3D printers. The scientists have developed a method and a material that allow cells to survive and thrive.

“Bioprinting is a new and exciting technology to manufacture three-dimensional tissue-mimicking cell cultures. It has been a major problem to develop the bioink required, i.e. a material that can encapsulate the cells and be used in printers. Our bioink has several exciting properties that open new opportunities to approach our vision – creating tissue and organs in the laboratory”, says Daniel Aili, associate professor in the Division of Biophysics and Bioengineering at Linköping University.

The properties of the ink can be modified as required and they have achieved excellent results in tests when using the material with different cell types: liver cells, heart cells, nerve cells and fibroblasts (a type of cell found in connective tissue). The research group has also solved one of the major challenges when attempting to print organic material: they have found a method that allows the cells to survive and thrive, despite the harsh treatment they receive. The results have just been published in the journal Biofabrication.

The ink the group has developed contains hyaluronan and synthetic molecules similar to proteins, known as peptides. These are bound together in a water-rich network, a hydrogel, that functions as a scaffolding for the cells.

“We can use some advanced chemical techniques to control how rapidly the hydrogel forms, in other words the transition from liquid to a gel that gently encapsulates the cells”, says Daniel Aili.

The scientists have developed a modular system, like Lego bricks, in which different components can be combined to create different types of hydrogel. The hydrogels provide mechanical support to the cells and encapsulate them without damaging them. They can also control cell growth and behaviour. A system of various peptides makes it possible to modify the properties to control the cells and incorporate various functionalities. One example from the wide array possible is to attach an enzyme that stimulates the growth of bone.

“We are one of the first research groups that can change the material properties both before and after it is printed. We can, for example, increase the degree of cross-linking during the process to provide more stability to the material, and we can change the biochemical properties. We can also adapt the material to different types of cells. This is a further step on the way to mimicking the support structures that surrounds most human cells, the extracellular matrix”, says Daniel Aili.

Since the material is dynamic and can be given tailored properties when used as bioink in 3D printing, the result of the research is referred to as a 4D printed biomaterial – yet another step closer to mimicking the body’s own functions.

“Our work is quite basic research, but we are aware that there is a huge medical need for tissue, and for better and biologically relevant models for drug development, not least as a replacement for animal experiments. Progress is rapid in this field at the moment”, Daniel Aili concludes.

###

The research has received funding from, among other sources, the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research (SSF), and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (AFM) at Linköping University.

Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting, Christopher Aronsson, Michael Jury, Sajjad Naeimipour, Fatemeh Rasti Boroojeni, Jonas Christoffersson, Philip Lifwergren, Carl-Fredrik Mandenius, Robert Selega?rd and Daniel Aili. Biofabrication 2020. Doi 10.1088/1758-5090/ab9490

Contact: Daniel Aili, [email protected], +46 13 28 89 84

Media Contact
Daniel Aili
[email protected]

Original Source

https://liu.se/en/news-item/nytt-bioblack-for-utskrifter-med-celler-i-3d

Related Journal Article

http://dx.doi.org/10.1088/1758-5090/ab9490

Tags: BiochemistryBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scalable Shape Memory Alloy Fibers Power Robotic Hands

August 19, 2025
blank

Oral Microbiome Changes Following Cancer Treatment Explored

August 19, 2025

Revolutionary Numerical Method Enhances Precision in Predicting Radiative Heat Transfer from Reusable Methalox Rocket Exhaust Plumes

August 19, 2025

Smithsonian Study Finds Carbon Markets Undervalue Shade-Grown Coffee Farms

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scalable Shape Memory Alloy Fibers Power Robotic Hands

Oral Microbiome Changes Following Cancer Treatment Explored

Revolutionary Numerical Method Enhances Precision in Predicting Radiative Heat Transfer from Reusable Methalox Rocket Exhaust Plumes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.