• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New nano-engineering strategy shows potential for improved advanced energy storage

Bioengineer by Bioengineer
July 6, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New types of cathodes, suitable for advanced energy storage, can be developed using beyond-lithium ion batteries

IMAGE

Credit: Supplied by University of Technology Sydney

The rapid development of renewable energy resources has triggered tremendous demands in large-scale, cost-efficient and high-energy-density stationary energy storage systems.

Lithium ion batteries (LIBs) have many advantages but there are much more abundant metallic elements available such as sodium, potassium, zinc and aluminum.

These elements have similar chemistries to lithium and have recently been extensively investigated, including sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), zinc-ion batteries (ZIBs), and aluminium-ion batteries (AIBs). Despite promising aspects relating to redox potential and energy density the development of these beyond-LIBs has been impeded by the lack of suitable electrode materials

New research led by Professor Guoxiu Wang from the University of Technology Sydney, and published in Nature Communications, describes a strategy using interface strain engineering in a 2D graphene nanomaterial to produce a new type of cathode. Strain engineering is the process of tuning a material’s properties by altering its mechanical or structural attributes.

“Beyond-lithium-ion batteries are promising candidates for high-energy-density, low-cost and large-scale energy storage applications. However, the main challenge lies in the development of suitable electrode materials,” ” Professor Wang, Director of the UTS Centre for Clean Energy Technology, said.

“This research demonstrates a new type of zero-strain cathodes for reversible intercalation of beyond-Li+ ions (Na+, K+, Zn2+, Al3+) through interface strain engineering of a 2D multilayered VOPO4-graphene heterostructure.

When applied as cathodes in K+-ion batteries, we achieved a high specific capacity of 160 mA h g-1 and a large energy density of ~570 W h kg?1, presenting the best reported performance to date. Moreover, the as-prepared 2D multilayered heterostructure can also be extended as cathodes for high-performance Na+, Zn2+, and Al3+-ion batteries.

The researchers say this work heralds a promising strategy to utilize strain engineering of 2D materials for advanced energy storage applications.

“The strategy of strain engineering could be extended to many other nanomaterials for rational design of electrode materials towards high energy storage applications beyond lithium-ion chemistry,” Professor Wang said.

###

The research was a collaboration with Professor Takayoshi Sasaki from National Institute for Materials Science, Japan.

Media Contact
Marea Martlew
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17014-w

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Limited CT Scan Impact with Automated Models

January 13, 2026

New Insights into Oligoasthenozoospermia Research

January 13, 2026

Embracing Uncertainty: Achieving Balance and Harmony

January 13, 2026

Nursing Perspectives on Sleep Promotion in Acute Care

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Limited CT Scan Impact with Automated Models

New Insights into Oligoasthenozoospermia Research

Embracing Uncertainty: Achieving Balance and Harmony

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.