• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

More ecosystem engineers create stability, preventing extinctions

Bioengineer by Bioengineer
July 3, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Justin Yeakel

When we think of engineering in nature, we tend to think of beavers — the tree-felling, dam-building rodents whose machinations can shape the landscape by creating lakes and changing the path of rivers. But beavers are far from the only organisms to reshape their environment. A squirrel who inadvertently plants oak trees is also an “ecosystem engineer” — roughly speaking, any organism whose impact on the environment outlasts its own lifetime. The coolest of these biological builders, according to Justin Yeakel, might be the shipworm, which eats through rocks in streams, creating cozy abodes for future invertebrate inhabitants.

Yeakel, an ecologist at the University of California, Merced, and a former Santa Fe Institute Omidyar Fellow is the lead author of a new paper that models the long term impact of ecosystem engineers. Researchers have long considered the role of ecosystem engineers in natural histories, but this study is among the first to quantitatively assess them in an ecological network model.

“We wanted to understand how food webs and interaction networks were established from a mechanistic perspective,” he says. “To do that, you have to include things like engineering because species influence their environment and there’s this feedback between the environment to the species.”

In particular, the model uses simple rules to show how food webs can be assembled, how species interactions can change over time, and when species go extinct. One striking result: Few ecosystem engineers led to many extinctions and instability while many ecosystem engineers led to stability and few extinctions.

“As you increase the number of engineers, that also increases the redundancy of the engineers and this tends to stabilize the system,” Yeakel says.

So, how do you create an ecological network model? It’s highly abstracted — there are no specific species like beavers or concrete environmental features like rivers. Everything is reduced to interactions: species can eat, need, or make. In this sense, nature becomes a network of interactions. For example, bees eat nectar from flowers; flowers need bees to be pollinated; trees make shade which flowers need.

The researchers gave the model a small number of rules, the main one being: Species have to eat only one thing to survive but they have to obtain all of the things they need. In less abstract terms, even if one flower species goes extinct, bees could survive on nectar from other flowers. But if either bees or trees fail to provide pollination or shade, which flowers need, then the flowers will go extinct.

Using these rules, the models were able to produce ecological networks similar to those in the real world, with a characteristic hourglass shape in species diversity — more diversity at the top and the bottom of the web, less in the middle. To expand the model for future research, Yeakel plans on incorporating evolutionary dynamics so that species can change what they eat and need and make.

Two and a half billion years before humans showed up, cyanobacteria were a planetary-scale engineer that slowly changed the composition of the entire atmosphere by oxygenating it. But unlike our photosynthetic predecessors, “we’re making changes on ecological timescales rather than evolutionary timescales,” Yeakel says. “Is an organism that becomes a planetary-scale engineer doomed to extinction if it changes the environment too quickly?”

###

Media Contact
Justin Yeakel
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17164-x

Tags: BiologyEcology/EnvironmentEvolutionSystems/Chaos/Pattern Formation/Complexity
Share13Tweet8Share2ShareShareShare2

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

New Guidelines for Managing Thrombosis in Burn Patients

Compact DAC Leveraging Optical Kerr Effect Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.