• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A scientific measure of dog years

Bioengineer by Bioengineer
July 2, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ideker Lab, UC San Diego

How old is your tail-wagging bundle of joy in human years? According to the well-known “rule of paw,” one dog year is the equivalent of 7 years. Now, in a study published July 2, in the journal Cell Systems, scientists say it’s wrong. Dogs are much older than we think, and researchers devised a more accurate formula to calculate a dog’s age based on the chemical changes in the DNA as organisms grow old.

Dogs share the same environment as their owners and receive almost the same standard of health care as humans, providing a unique opportunity for scientists to understand aging across species. Like humans, dogs follow similar developmental trajectories that lead them to grey and become more susceptible to age-related diseases over time. However, how they age on a molecular level is more complicated–aging rapidly at first and slowing down later in life.

“In terms of how physiologically mature a 1-year-old dog is, a 9-month-old dog can have puppies. Right away, you know that if you do the math, you don’t just times seven,” says senior author Trey Ideker (@TreyIdeker) of the University of California, San Diego. “What’s surprising is exactly how old that one-year-old dog is–it’s like a 30-year old human.”

Human and dog DNA, which codes who we are, doesn’t change much throughout the course of life, but chemical marks on the DNA, called methylation marks, do. Ideker considers these marks like wrinkles in the genome. “I tend to think of it very much like when you look at someone’s face and guess their age based on their wrinkles, gray hair, and other features,” he says. “These are just similar kinds of features on the molecular level.”

The researchers studied 104 Labrador retrievers spanning from few-week-old puppies to 16-year-old dogs with the help of two canine experts, Danika Bannasch of the University of California, Davis, and Elaine Ostrander of the National Institutes of Health. They compared the changes in the methylation pattern to humans.

The comparison revealed a new formula that better matches the canine-human life stages: human age = 16 ln(dog age) + 31. Based on the new function, an 8-week-old dog is approximately the age of a 9-month-old baby, both being in the infant stage where puppies and babies develop teeth. The average 12-year lifespan of Labrador retrievers also corresponds to the worldwide life expectancy of humans, 70 years.

“I like to take my dogs on runs, and so I’m a little bit more sympathetic to the 6-year-old now,” says Ideker, who realized that his dog is pushing 60 according to the new calculation.

In both species, they found that the age-driven methylation largely happens in developmental genes that are hotly fired up to create body plans in utero and regulating childhood development. By the time one becomes an adult and stops growing, “you’ve largely shut off these genes, but they’re still smoldering,” says Ideker. “If you look at the methylation marks on those developmental genes, they’re still changing.”

Focusing on the smoldering developmental genes, the team developed a clock that can measure age and physiological states across different species, while other methylation-quantifying age-predicting methods only do well in one species. Ideker also noted that future investigation in different dog breeds with various lifespans could provide more insight into the new clock. The clock may not only serve as a tool to understand cross-species aging but also apply as clinical practice for veterinarians to take proactive steps to treat animals.

###

This work is supported by the following: the California Institute for Regenerative Medicine, the National Institute for Environmental Health Sciences, the National Institute of General Medical Sciences, the National Institute on Aging, the National Institute of Dental and Craniofacial Research, the Maxine Adler Endowed Chair Funds, and the Intramural Program of the National Human Genome Research Institute.

Cell Systems, Wang et al.: “Quantitative Translation of Dog-to-Human Aging by Conserved Remodeling of the DNA Methylome”
https://www.cell.com/cell-systems/fulltext/S2405-4712(20)30203-9

Cell Systems (@CellSystemsCP) is a monthly journal published by Cell Press devoted to systems biology. Cell Systems papers use approaches from physics, engineering, mathematics, and computer science to address salient biological questions. Visit: http://www.cell.com/cell-systems. To receive Cell Press media alerts, contact [email protected].

Media Contact
Carly Britton
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cels.2020.06.006

Tags: BiologyDevelopmental/Reproductive BiologyGeneticsPets/EthologyZoology/Veterinary Science
Share17Tweet11Share3ShareShareShare2

Related Posts

Probiotics Alleviate Ovarian Toxicity in Endotoxemic Mice

October 27, 2025

Burnout Causes in Family Medicine and Nursing Residents

October 27, 2025

Ezrin Loss Causes Mitochondrial Dysfunction, Neuronal Death

October 27, 2025

2025 Data Confirms COVID-19 Vaccines Offer Strong and Lasting Protection

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multisystem Inflammatory Syndrome: SARS-CoV-2-Triggered Kawasaki Disease

Beyond Electronics: Utilizing Light to Accelerate Computing Technology

Probiotics Alleviate Ovarian Toxicity in Endotoxemic Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.