• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A shake-up in cell culturing: Flame sterilization may affect the culture

Bioengineer by Bioengineer
July 1, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find that a common practice for keeping microbial contaminants out of shake-flask cultures can considerably affect cell growth

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Researchers commonly culture bacteria for many purposes, such as to screen pharmaceuticals and manufacture vaccines. In these cases, shake flasks have been commonly and generally used for over 90 years to cultivate microbes.

To keep track of what’s going on in the shake flask, researchers must use stringent sterilization techniques while extracting a sample of cells. A common sterilization technique is to expose the plug and flask to a flame at several time points during cell extraction. However, if this sterilization affects the cell culture in any way, you may inadvertently hinder production of the vaccine or whatever substance you want from the culture.

In a study recently published in Scientific Reports, researchers from the University of Tsukuba have shown that flame sterilization introduces carbon dioxide into shake flasks. This excess carbon dioxide can considerably affect cell growth.

Carbon dioxide is a product of methane combustion in the flame. The researchers found that flaming the flask for even a few extra seconds, or tilting the flask a few extra degrees, considerably increased the carbon dioxide concentration in the flask.

“For example, at a flame exposure time of only 5 s, increasing the inclination angle from 15° to 25° increased the carbon dioxide concentration in the headspace by approximately 50%,” says Professor Hideki Aoyagi, senior author of the study. “Computational modeling confirmed our findings.”

These increases in carbon dioxide concentration are induced over the course of only a few seconds of flame sterilization. But do they substantially affect cell growth? To test this hypothesis, the researchers needed to add excess carbon dioxide while keeping the flasks shaking, because interrupting the shaking can itself affect cell growth.

“We introduced intermittent carbon dioxide at concentrations similar to those expected by flame sterilization,” explains Professor Aoyagi. “The ultimate oxygen demand of Acetobacter pasteurianus–known to spoil wine– increased by up to 70%. Pelomonas saccharophila increased by up to 35%, whereas the other two microbes were not clearly affected in terms of growth.”

The researchers do not yet know how common it is for flaming a shake-flask to alter cell culture growth. Nevertheless, seemingly minor experimental sterilization variables–too subtle for most researchers to even notice at first glance–may actually be pertinent. Culturing microbes in shake flasks and producing valuable products in the culture–perhaps relevant to COVID-19 research–may be substantially more complicated than previously appreciated.

###

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-66810-3

Tags: BacteriologyBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyClimate ChangeMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.