• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Australian scientists reveal a lost 8 billion light years of universe evolution

Bioengineer by Bioengineer
June 18, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Every year, 2 million black hole mergers are missed — Australian scientists work out how to detect them, revealing a lost 8 billion light years of Universe evolution

IMAGE

Credit: Carl Knox, OzGrav/Swinburne University of Technology

Last year, the Advanced LIGO-VIRGO gravitational-wave detector network recorded data from 35 merging black holes and neutron stars. A great result – but what did they miss? According to Dr Rory Smith from the ARC Centre of Excellence in Gravitational Wave Discovery at Monash University in Australia – it’s likely there are another 2 million gravitational wave events from merging black holes, “a pair of merging black holes every 200 seconds and a pair of merging neutron stars every 15 seconds” that scientists are not picking up.

Dr Smith and his colleagues, also at Monash University, have developed a method to detect the presence of these weak or “background” events that to date have gone unnoticed, without having to detect each one individually.
The method – which is currently being test driven by the LIGO community – “means that we may be able to look more than 8 billion light years further than we are currently observing,” Dr Smith said.

“This will give us a snapshot of what the early universe looked like while providing insights into the evolution of the universe.”

The paper, recently published in the Royal Astronomical Society journal, details how researchers will measure the properties of a background of gravitational waves from the millions of unresolved black hole mergers.

Binary black hole mergers release huge amounts of energy in the form of gravitational waves and are now routinely being detected by the Advanced LIGO-Virgo detector network. According to co-author, Eric Thrane from OzGrav-Monash, these gravitational waves generated by individual binary mergers “carry information about spacetime and nuclear matter in the most extreme environments in the Universe. Individual observations of gravitational waves trace the evolution of stars, star clusters, and galaxies,” he said.

“By piecing together information from many merger events, we can begin to understand the environments in which stars live and evolve, and what causes their eventual fate as black holes. The further away we see the gravitational waves from these mergers, the younger the Universe was when they formed. We can trace the evolution of stars and galaxies throughout cosmic time, back to when the Universe was a fraction of its current age.”

The researchers measure population properties of binary black hole mergers, such as the distribution of black hole masses. The vast majority of compact binary mergers produce gravitational waves that are too weak to yield unambiguous detections – so vast amounts of information is currently missed by our observatories.

“Moreover, inferences made about the black hole population may be susceptible to a ‘selection bias’ due to the fact that we only see a handful of the loudest, most nearby systems. Selection bias means we might only be getting a snapshot of black holes, rather than the full picture,” Dr Smith warned.

The analysis developed by Smith and Thrane is being tested using real world observations from the LIGO-VIRGO detectors with the program expected to be fully operational within a few years, according to Dr Smith.

###

Media Contact
Tania Ewing
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/mnras/staa1642

Tags: AstronomyAstrophysicsChemistry/Physics/Materials SciencesSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.