• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists detect crab nebula using innovative gamma-ray telescope

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First-of-its-kind telescope promises to shed new light on the physics of high-energy phenomena, from supernovae to dark matter

IMAGE

Credit: Photo: Amy C. Oliver, Center for Astrophysics | Harvard & Smithsonian

Scientists have detected gamma rays from the Crab Nebula, the most famous of supernova remnants, using a next-generation telescope that opens the door for astrophysicists to study some of the most energetic and unusual objects in the universe.

The prototype Schwarzschild-Couder Telescope (SCT)–developed by scientists at the Columbia University in collaboration with researchers from other institutions–is part of an international effort, known as the Cherenkov Telescope Array (CTA), which aims to construct the world’s largest and most powerful gamma-ray observatory, with more than 100 similar telescopes in the northern and southern hemispheres.

“That we were able to successfully detect the Crab Nebula demonstrates the viability of the novel Schwarzschild-Couder design,” said Brian Humensky, associate professor of physics at Columbia, who worked with a team to design and build the telescope. “It’s been a long journey, so it’s enormously satisfying to see the telescope performing, and we’re excited to see what we can do with it.”

The Crab Nebula, so named because of its tentacle-like structure that resembles a crustacean, is the remnant of a massive star that self-destructed almost a millennium ago in an enormous supernova explosion. The estimated distance to what’s left of this star from Earth is about 6,500 light-years.

Over time the light from the supernova faded away, leaving behind the remains of a powerful, rapidly spinning neutron star, or pulsar, that can still be seen within a cloud of gas, dust and highly energetic subatomic particles, which emit radiation across the electromagnetic spectrum. The most energetic of those particles radiate gamma rays.

While scientists have been using the SCT technology to observe the Crab Nebula since January 2020, the project has been underway for nearly a decade. At its heart is a high-speed, high-resolution camera and a dual-mirror system–more intricate than the one-mirror design traditionally used in gamma-ray telescopes–that work together to enhance the quality of light for greater imaging detail over larger field of view across the sky.

“The camera triggers upon bursts of light that occur when a gamma ray collides with an air molecule, and records these signals at a rate of a billion frames per second,” said Humensky, who collaborated with colleagues at Barnard College to build major components of SCT’s mirror alignment system and develop its control software. “This allows us to reconstruct the gamma rays with extraordinary precision.”

Humensky’s involvement with the prototype SCT, unveiled last year at Fred Lawrence Whipple Observatory in Arizona, began in 2012, when the National Science Foundation funded the project. The Columbia team, including Barnard College postdoctoral research associate Qi Feng, and Ari Brill and Deivid Ribeiro, Columbia doctoral students in physics, helped achieve the initial optical focus.

Ribeiro has worked on the telescope since fall 2015, starting through Columbia’s Bridge to the PhD program. “I’ve made seven trips to Arizona, beginning with a three-month stay to integrate the secondary mirror panels with the telescope structure,” he said. “It’s rewarding to be part of this team and to have collected some of the data that led to this first detection.”

The sighting of the Crab Nebula, announced at the 236th meeting of the American Astronomical Society June 1, lays the groundwork for the use of the SCT in the future Cherenkov Telescope Array observatory. Slated for completion in 2026, the observatory, with its configuration of 120 telescopes of varying sizes split between Chile and Spain’s Canary Islands, will detect sources of gamma rays 100 times faster than current instruments.

“The success of the prototype SCT creates an opportunity for the Cherenkov Telescope Array to address and hopefully answer some of the biggest questions in astronomy: What is dark matter? How are the most energetic cosmic rays created?” Humensky said. “It’s exciting to look forward to.”

###

Media Contact
Carla Cantor
[email protected]

Original Source

https://news.columbia.edu/scientists-detect-crab-nebula-using-gamma-ray-telescope

Tags: AstronomyAstrophysicsMeteorologySoftware EngineeringSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.