• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

COVID-19 drug development could benefit from approach used against flu

Bioengineer by Bioengineer
June 2, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Texas at Austin

A new study from researchers at The University of Texas at Austin has found that some antivirals are useful for more than helping sick people get better — they also can prevent thousands of deaths and hundreds of thousands of virus cases if used in the early stages of infection.

The study, published today in the journal Nature Communications, focused on influenza and has implications for the coronavirus that causes COVID-19. By modeling the impact of a pair of leading flu drugs, the team found significant differences in effects between oseltamivir, an older antiviral treatment for flu that patients know by the name Tamiflu, and a newer one, baloxavir, which is sold under the brand name Xofluza.

The researchers found that the newer treatment — by effectively and rapidly stopping virus replication — dramatically reduced the length of time that an infected person is contagious and, therefore, better limited the spread of flu.

“We found that treating even 10% of infected patients with baloxavir shortly after the onset of their symptoms can indirectly prevent millions of infections and save thousands of lives during a typical influenza season,” said Robert Krug, a professor emeritus of molecular biosciences, writing for a blog that accompanied the paper.

Early basic research discoveries by Krug informed the development of baloxavir.

Krug and a team of epidemiological modelers headed by Lauren Ancel Meyers, a professor of integrative biology, concluded from the study that having a similarly effective antiviral treatment for the coronavirus would help to prevent thousands of infections and deaths. Creating such an antiviral would take time and new strategies in public health planning, but the benefits for patients, communities and health care settings could be profound.

“Imagine a drug that quashes viral load within a day and thus radically shortens the contagious period,” said Meyers, who models the spread of viruses including the virus that causes COVID-19. “Basically, we could isolate COVID-19 cases pharmaceutically rather than physically and disrupt chains of transmission.”

To date, most COVID-19 drug research efforts have prioritized existing antivirals that can be deployed quickly to treat the most seriously ill patients coping with life-threatening symptoms. The scientists acknowledge it would represent a shift to develop a new antiviral for the coronavirus, to be used early in an infection with the aim of curtailing viral replication, just as baloxavir does for flu.

“It may seem counterintuitive to focus on treatments, not for the critically ill patient in need of a life-saving intervention, but rather for the seemingly healthy patient shortly after a COVID-19 positive test,” Krug said. “Nonetheless, our analysis shows that the right early-stage antiviral treatment can block transmission to others and, in the long run, may well save more lives.”

Postdoctoral researcher Zhanwei Du carried out many of the modeling studies. UT graduate student Ciara Nugent and Alison P. Galvani of the Yale School of Public Health co-authored the paper, “Modeling mitigation of influenza epidemics by baloxavir.” The team also wrote a companion blog post about the implications for COVID-19.

###

The research was supported by grants from the National Institutes of Health, including throuthrough the Models of Infectious Disease Agent Study (MIDAS) program.

Media Contact
Christine Sinatra
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16585-y

Tags: EpidemiologyInfectious/Emerging DiseasesMathematics/StatisticsMedicine/HealthMicrobiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Technologies Poised to Enhance Care for Parkinson’s Patients

Innovative Technologies Poised to Enhance Care for Parkinson’s Patients

August 15, 2025
blank

Humanized ALK Antibody-Drug Shows Cancer-Fighting Promise

August 15, 2025

Advancing Precision Interventions and Metrics for Inflammaging

August 15, 2025

University of Oklahoma’s Smoking Cessation App Shows Strong Results in Clinical Trial

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Network Offers Promising Advances in Predicting Health Issues in Dogs

Innovative Technologies Poised to Enhance Care for Parkinson’s Patients

Ocular Side Effects Associated with Semaglutide: New Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.