• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Large simulation finds new origin of supermassive black holes

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sunmyon Chon

Computer simulations conducted by astrophysicists at Tohoku University in Japan, have revealed a new theory for the origin of supermassive black holes. In this theory, the precursors of supermassive black holes grow by swallowing up not only interstellar gas, but also smaller stars as well. This helps to explain the large number of supermassive black holes observed today.

Almost every galaxy in the modern Universe has a supermassive black hole at its center. Their masses can sometimes reach up to 10 billion times the mass of the Sun. However, their origin is still one of the great mysteries of astronomy. A popular theory is the direct collapse model where primordial clouds of interstellar gas collapse under self-gravity to form supermassive stars which then evolve into supermassive black holes. But previous studies have shown that direct collapse only works with pristine gas consisting of only hydrogen and helium. Heavier elements such as carbon and oxygen change the gas dynamics, causing the collapsing gas to fragment into many smaller clouds which form small stars of their own, rather than a few supermassive stars. Direct collapse from pristine gas alone can’t explain the large number of supermassive blackholes seen today.

Sunmyon Chon, a postdoctoral fellow at the Japan Society for the Promotion of Science and Tohoku University and his team used the National Astronomical Observatory of Japan’s supercomputer “ATERUI II” to perform long-term 3D high-resolution simulations to test the possibility that supermassive stars could form even in heavy-element-enriched gas. Star formation in gas clouds including heavy elements has been difficult to simulate because of the computational cost of simulating the violent splitting of the gas, but advances in computing power, specifically the high calculation speed of “ATERUI II” commissioned in 2018, allowed the team to overcome this challenge. These new simulations make it possible to study the formation of stars from gas clouds in more detail.

Contrary to previous predictions, the research team found that supermassive stars can still form from heavy-element enriched gas clouds. As expected, the gas cloud breaks up violently and many smaller stars form. However, there is a strong gas flow towards the center of the cloud; the smaller stars are dragged by this flow and are swallowed-up by the massive stars in the center. The simulations resulted in the formation of a massive star 10,000 time more massive than the Sun. “This is the first time that we have shown the formation of such a large black hole precursor in clouds enriched in heavy-elements. We believe that the giant star thus formed will continue to grow and evolve into a giant black hole,” says Chon.

This new model shows that not only primordial gas, but also gas containing heavy elements can form giant stars, which are the seeds of black holes. “Our new model is able to explain the origin of more black holes than the previous studies, and this result leads to a unified understanding of the origin of supermassive black holes,” says Kazuyuki Omukai, a professor at Tohoku University.

###

Media Contact
Dr. Hinako Fukushi
[email protected]

Original Source

https://www.cfca.nao.ac.jp/en/pr/20200602

Related Journal Article

http://dx.doi.org/10.1093/mnras/staa863

Tags: AstronomyAstrophysicsSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

Enhancing Adolescent Health Literacy: Insights from Nurses

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.