• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New Army 3-D printing study shows promise for predictive maintenance

Bioengineer by Bioengineer
May 21, 2020
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dave McNally

ABERDEEN PROVING GROUND, Md. — Army researchers have discovered a way to monitor the performance of 3-D printed parts, which tend to have imperfections that affect performance in ways traditionally-machined parts do not.

A new study published recently in the International Journal of Advanced Manufacturing Technology showed that the Army could detect and monitor the wear and tear of 3-D printed maraging steel through sensor measurement. These types of measurements help Soldiers maintain readiness because these indicators help predict when parts will degrade or fail, and need replacement.

“3-D printed parts display certain attributes, due to the manufacturing process itself, which, unchecked, may cause these parts to degrade in manners not observed in traditionally-machined parts,” said Dr. Jaret C. Riddick, director of the Vehicle Technology Directorate at the U.S. Army’s Combat Capabilities Development Command’s Army Research Laboratory. “Because of this, it’s commonly understood that the use of these parts, in current cases, is meant to be a stop-gap to fill a critical need just as we have seen with 3-D printing during the COVID-19 response.”

He said the laboratory’s study points to scientific discovery that ensures readiness in increasingly contested environments where the immediate need for replacement parts places constraints on the time it takes to deliver them from far away. In these cases, Soldiers would opt for a stop-gap to continue the mission rather having to abort the mission.

This study was led by a team of researchers from the laboratory, the National Institute of Standards and Technology, CCDC Aviation and Missile Center and Johns Hopkins University, who likened cues from the material’s performance to a vehicle odometer reading that signals a need for an oil change.

“The strain or eddy current sensor would supply a measurement and let you know the part needs replaced,” said Dr. Todd C. Henry, a mechanical engineer at the laboratory who co-authored the study.

Henry wants to develop a tool for measuring the unique performance of each 3-D printed part acknowledging that each is different via sensor measurement.

“If I took a batch of paper clips and started bending them back and forth they’ll break from fatigue damage at different intervals depending on the internal imperfections associated with the steel,” Henry said. “Every real-world material and structure has imperfections that make it unique in terms of performance so if the batch of paper clips take 21-30 cycles to break, what we would do today is after 15 cycles throw the batch of paperclips away to be safe.”

He said the imperfections in 3-D printed parts are typically attributed to voids and geometric variance between the computer model and the print. Sensor technology he’s developing offers a way to track individual parts, predict failure points and replace them a few cycles before they break.

“In order to create a high trust situation, you take little risk such as throwing the paper clip away after 15 cycles even though the lowest lifetime in your test batch was 21. If you try and take more risk and put the throw away limit at 22 cycles then the paperclip may break on someone sometime but you will save money.”

The research team conducted an experimental validation set for assessing the real-time fatigue behavior of metallic additively manufactured maraging steel structures.

Army researchers are applying these findings to new studies to 3-D-printing of stainless steel parts and using machine-learning techniques, instead of sensors, to characterize the life of parts, Henry said.

“With 3-D printing, you might not be able to replace a part with the exact same material,” he said. “There is a cost and time benefit with 3-D printing that perhaps warrants using it anyway. Imagine a situation where you always chose the strongest material but there was another material that was cheaper and easier to get however you need to prove that this other material can be depended on.”

This study is as much about understanding the specific performance of a 3-D-printed material as it is about understanding our ability to monitor and detect performance and 3-D-printed material degradation, Henry said.

###

Henry’s co-authors for the paper, “In-Situ Fatigue Monitoring Investigation of Additively Manufactured Maraging Steel” are Dr. Francis Phillips and Dr. Dan Cole, CCDC Army Research Laboratory; Dr. Ed Garboczi, National Institute of Standards and Technology; Dr. Robert Haynes, Combat Capabilities Development Command Aviation and Missile Center and Dr. Terrence Johnson, Johns Hopkins University.

CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army’s corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command’s core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more lethal to win the nation’s wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

Media Contact
T’Jae Ellis
[email protected]

Original Source

https://www.army.mil/article/235755

Related Journal Article

http://dx.doi.org/10.1007/s00170-020-05255-4

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMechanical EngineeringResearch/DevelopmentTechnology TransferVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiome Transplants Enhance Effectiveness of Cancer Immunotherapy, New Research Shows

Many U.S. Adults’ Heart Ages Outpace Their Actual Age—What About Yours?

Subthalamic Stimulation’s Impact on Parkinson’s Speech

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.