• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Image analysis technique provides better understanding of heart cell defects

Bioengineer by Bioengineer
May 19, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new algorithm combines gradient methods with fast Fourier transforms to quantify the organization of cardiac myofibrils

IMAGE

Credit: Brett N. Napiwocki

WASHINGTON, May 19, 2020 — Heart disease is the leading cause of death in the United States and other industrialized nations, and many patients face limited treatment options. Fortunately, stem cell biology has enabled researchers to produce large numbers of cardiomyocytes, the cells that make up the heart or cardiac muscle and have the potential to be used in advanced drug screens and cell-based therapies.

One of the pitfalls of these stem cell-generated cardiomyocytes is that they do not represent adult human cardiomyocytes but remain immature without further intervention. Additionally, current image analysis techniques do not allow researchers to analyze heterogeneous, multidirectional, striated myofibrils typical of immature cells to determine when new interventions are coaxing the cells to organize.

In the Journal of Applied Physics, from AIP Publishing, researchers showcase an algorithm that combines gradient methods with fast Fourier transforms, the scanning gradient Fourier transform or SGFT technique, to quantify myofibril structures in heart cells with considerable accuracy. Myofibrils are the elongated contractile unit of a muscle cell.

“If you look at adult human cardiac tissue, everything is not in perfect alignment. Everything is not stacked nicely and neatly like a bookshelf,” said Wendy Crone, an author of the paper. “The structures are more complicated. We wanted to be able to quantify the organization.”

This level of analysis, combined with new emerging studies of the effects of cell mutation, has the potential to produce new insights regarding the mechanisms underlying the generation of myofibrils and various cardiomyopathies, which make it harder for the heart muscle to pump blood to the rest of the body.

“There is myofibril disarray in certain diseases of the heart,” said Crone. “With our technique, we can quantify the disarray, which provides a better understanding of the severity of disease in heart cells.”

The heterogeneous, striated patterning that this new method can detect and quantify occurs in countless other instances in biology and elsewhere. For instance, the SGFT technique clearly detects the distribution of collagen organization and orientation in breast tissue biopsies, which is significant since breast tissue with cancer has more organized collagen structures. As prior studies have shown, the morphology of collagen fibers in breast cancer tissue is a strong prognostic indicator of the malignancy of the tumor.

The SGFT technique could also potentially be used to quantify striated patterns in early stage neurons derived from stems cells.

“Our code can quantify the organization of neural rosettes, too,” said Crone.

###

The article, “The scanning gradient Fourier transform (SGFT) method for assessing sarcomere organization and alignment,” is authored by Wendy C. Crone, Max R. Salick, Brett N. Napiwocki, Rachel A. Kruepke, Gavin T. Knight and Randolph Ashton. The article will appear in the Journal of Applied Physics on May 12, 2020 (DOI: 10.1063/1.5129347). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5129347.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5129347

Tags: BiologyBiomechanics/BiophysicsBiotechnologyCardiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peptide Ratios Advance Post-Mortem Interval Estimation

Antibody-Drug Targets in Breast Cancer Metastases Explored

Nurses’ Earthquake Experiences Shape Professional Practices

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.