Researchers simulate the core of Mars to investigate its composition and origin
Credit: CC-0
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet’s seismic properties for the first time. This information will be compared to observations made by Martian space probes in the near future. Whether the results between experiment and observation coincide or not will either confirm existing theories about Mars’ composition or call into question the story of its origin.
Mars is one of our closest terrestrial neighbors, yet it’s still very far away — between about 55 million and 400 million kilometers depending on where Earth and Mars are relative to the sun. At the time of writing, Mars is around 200 million kilometers away, and in any case, it is extremely difficult, expensive and dangerous to get to. For these reasons, it is sometimes more sensible to investigate the red planet through simulations here on Earth than it is to send an expensive space probe or, perhaps one day, people.
Keisuke Nishida, an Assistant Professor from the University of Tokyo’s Department of Earth and Planetary Science at the time of the study, and his team are keen to investigate the inner workings of Mars. They look at seismic data and composition which tell researchers not just about the present state of the planet, but also about its past, including its origins.
“The exploration of the deep interiors of Earth, Mars and other planets is one of the great frontiers of science,” said Nishida. “It’s fascinating partly because of the daunting scales involved, but also because of how we investigate them safely from the surface of the Earth.”
For a long time it has been theorized that the core of Mars probably consists of an iron-sulfur alloy. But given how inaccessible the Earth’s core is to us, direct observations of Mars’ core will likely have to wait some time. This is why seismic details are so important, as seismic waves, akin to enormously powerful sound waves, can travel through a planet and offer a glimpse inside, albeit with some caveats.
“NASA’s Insight probe is already on Mars collecting seismic readings,” said Nishida. “However, even with the seismic data there was an important missing piece of information without which the data could not be interpreted. We needed to know the seismic properties of the iron-sulfur alloy thought to make up the core of Mars.”
Nishida and team have now measured the velocity for what is known as P-waves (one of two types of seismic wave, the other being S-waves) in molten iron-sulfur alloys.
“Due to technical hurdles, it took more than three years before we could collect the ultrasonic data we needed, so I am very pleased we now have it,” said Nishida. “The sample is extremely small, which might surprise some people given the huge scale of the planet we are effectively simulating. But microscale high-pressure experiments help exploration of macroscale structures and long time-scale evolutionary histories of planets.”
A molten iron-sulfur alloy just above its melting point of 1,500 degrees Celsius and subject to 13 gigapascals of pressure has a P-Wave velocity of 4,680 meters per second; this is over 13 times faster than the speed of sound in air, which is 343 meters per second. The researchers used a device called a Kawai-type multianvil press to compress the sample to such pressures. They used X-ray beams from two synchrotron facilities, KEK-PF and SPring-8, to help them image the samples in order to then calculate the P-wave values.
“Taking our results, researchers reading Martian seismic data will now be able to tell whether the core is primarily iron-sulfur alloy or not,” said Nishida. “If it isn’t, that will tell us something of Mars’ origins. For example, if Mars’ core includes silicon and oxygen, it suggests that, like the Earth, Mars suffered a huge impact event as it formed. So, what is Mars made of and how was it formed? I think we are about to find out.”
###
Journal article
Keisuke Nishida, Yuki Shibazaki, Hidenori Terasaki, Yuji Higo, Akio Suzuki, Nobumasa Funamori, and Kei Hirose. Effect of sulfur on sound velocity of liquid iron under Martian core conditions. Nature Communications. DOI: 10.1038/s41467-020-15755-2
Funding and support
JSPS KAKENHI (grant no. 12J07930, 26800231, 17K14379 and 16H06285)
Useful links
Department of Earth and Planetary Science
http://www.
Graduate School of Science
https:/
SPring-8
http://www.
Photon Factory
https:/
Research contact
Dr. Keisuke Nishida
Bayerisches Geoinstitut, University of Bayreuth
Universitätsstraße 30, 95440 Bayreuth, Germany
Tel: +49-(0)921-55-3712
Email: [email protected]
Professor Kei Hirose
Department of Earth and Planetary Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
Tel: +81-(0)3-5841-4574
Email: [email protected]
Press Contact
Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-(0)80-9707-8450
Email: [email protected]
About the University of Tokyo
The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.
Media Contact
Dr. Keisuke Nishida
[email protected]
Original Source
https:/
Related Journal Article
http://dx.