• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new plant-based system for the mass production of allergens for immunotherapy

Bioengineer by Bioengineer
May 11, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba develop a novel high-yield method for the efficient production of birch pollen allergen for immunotherapeutic purposes

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Allergies can significantly affect health and quality of life. While allergen immunotherapy provides long-lasting therapeutic relief to people suffering from environmental allergies, the therapy can last several years and requires large amounts of allergen. Now, researchers from the University of Tsukuba developed a novel system that enables the mass production of the major birch pollen allergen Bet v 1 in plant leaves in just a matter of days. In a new study published in Frontiers in Plant Science, they showed that their system not only produces large amounts of Bet v 1, but the purified protein was also highly reactive towards the IgE antibodies in sera from individuals with birch pollen allergy.

“The idea of allergen immunotherapy is to desensitize the body’s response to the allergen by exposing patients to it in gradually increasing amounts,” says corresponding author of the study Professor Kenji Miura. “Because a significant drawback is the difficult, expensive and low-yield production of allergens, our goal was to develop a new system that allows for the rapid and massive production of allergens that can be used in the clinical setting.”

To achieve their goal, the researchers turned to their previously established “Tsukuba system,” which makes use of a method called agroinfiltration. They first introduced the gene for Bet v 1 into a specific type of bacteria called Agrobacterium tumefaciens and let them grow. They then immersed leaves of the plant Nicotiana benthamiana into the bacterial solution to bring the bacteria into close contact with the plant, so the bacteria could transfer the Bet v 1 gene to plant cells, which in turn started producing the protein. To test the quality of their product, the researchers also produced the protein in Brevibacillus brevis, which is a standard bacterial host for protein production.

“We were able to purify 1.2mg of Bet v 1 protein from 1g leaves in just 5 days,” explains Professor Miura. “This is a relatively large amount that is otherwise difficult to achieve using standard methods. Our next goal was to test whether our protein was immunogenic, which is a prerequisite for immunotherapy.”

The researchers isolated sera from individuals with birch pollen allergy and mixed them with Bet v 1 protein purified from plants and bacteria. In both cases, the researchers were able to show that Bet v 1-specific IgE from the patients’ sera, which is the antibody causing the allergy, was strongly reactive to their proteins.

“These are striking results that show how functional allergens can be produced in a fast and efficient way,” says Professor Miura. “Given that immunotherapy requires 5-20μg allergen per treatment over several years, our findings could offer an opportunity to significantly improve allergen immunotherapy.”

###

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fpls.2020.00344

Tags: DermatologyImmunology/Allergies/AsthmaMedicine/HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

New Research Reveals Biological Factors Behind Daytime Sleepiness

New Research Reveals Biological Factors Behind Daytime Sleepiness

August 20, 2025
NLRP3 Inflammasome Roles in PANoptosis, Disease

NLRP3 Inflammasome Roles in PANoptosis, Disease

August 20, 2025

New Potent Tubulin Inhibitor Discovered for Cancer

August 20, 2025

New Study Reveals Early Heart Dysfunction in Young Adults with Bipolar Disorder

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Biological Factors Behind Daytime Sleepiness

For Apes, What’s Out of Sight Stays on Their Mind

Methionine Gamma-Lyase: Purification and Anticancer Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.