• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Double bubbles pierce with less trouble

Bioengineer by Bioengineer
April 30, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two optical cavitation bubbles penetrate soft materials better than one

IMAGE

Credit: Vicente Robles

Two microscopic bubbles are better than one at penetrating soft materials, concludes a new study by engineers at the University of California, Riverside.

Optical cavitation, which uses a laser to form bubbles in a liquid that expand rapidly then collapse, could be a safe way to quickly and efficiently deliver therapeutic agents, such as drugs or genes, directly into living cells. Current methods for introducing foreign materials into cells, known as transfection, rely on puncturing the outer membrane with a laser, which risks heat damage to the cell, or a pipette, which risks contamination.

Though not quite ready for prime time yet, scientists are improving optical cavitation techniques. The new paper shows two bubbles produce long, fine jets that penetrate far enough with only five pulses to make cavitation potentially suitable for transfection or needle-free injections.

“The study of cavitation bubbles has evolved relatively fast, from learning how to avoid the damage they cause on ship propellers to benefitting medicine delivery,” said Vicente Robles, a doctoral student at the Marlan and Rosemary Bourns College of Engineering, who led the study. “The biggest limitation on their applications is our creativity.”

Cavitation bubbles are micron-sized and live for only a fraction of a second, but generate strong, local changes in physical properties of the surrounding medium, making them prime candidates for localized surface cleaning, cell targeting, and heating or cooling.

In double-bubble configurations, one bubble collapses faster and accelerates the neighboring bubble to invert and pierce itself, emitting a fast jet that could, if forceful enough, also pierce a cell membrane and possibly be used to transfect a cell. However, the jet’s speed, force, and trajectory are highly influenced by the mechanical properties of the medium surrounding it and the spatial and temporal separations of the bubbles.

Robles started by using lasers to create bubbles that form jets of water directed at a medium. He then compared single- and double-bubble jets directed at both petroleum jelly and a transparent agar gel widely used to model human tissue.

The double-bubble process created elongated, fast, focused jets that increased in length and volume when directed at the agar gel. Just five pulses penetrated 1.5 millimeters — enough to pierce human skin. This was achieved without the special micro-nozzles used in existing laser injection systems. In petroleum jelly, double-bubble jetting produced the same penetration length as single-bubble jetting, but with a 45% reduction in damage area, potentially resulting in less thermal and shockwave damage to the surrounding medium, and from three times farther away.

“The use of a laser-induced double-bubble arrangement is a significant advantage over previous studies, which rely on a converging nozzle or pressurized cavity to produce forceful jets,” mechanical engineering professor and senior author Guillermo Aguilar said. “Here, we take advantage of the inherent physics of the asynchronous collapse of two bubbles to accelerate the jet that pierces the nearby surface.”

The study concludes double-bubble cavitation could offer compact, device-free alternatives for needle-free applications after further study and improvement.

###

The paper, “Soft material perforation via double-bubble laser-induced cavitation microjets,” is published in Physics of Fluids. Other authors include E. Gutierrez-Herrera; L. F. Devia-Cruz; D. Banks; and S. Camacho-Lopez. The article was selected by the editors as an Editor’s Pick. The research was a collaborative effort between UC Riverside and the Center for Scientific Research and Higher Education at Ensenada, Mexico, and supported by a Ford Foundation Predoctoral Fellowship to Robles.

About UC Riverside

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email [email protected].

Media Contact
Holly Ober
[email protected]

Original Source

https://news.ucr.edu/articles/2020/04/29/double-bubbles-pierce-less-trouble

Related Journal Article

http://dx.doi.org/10.1063/5.0007164

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesGene TherapyMaterialsMechanical EngineeringOpticsPharmaceutical SciencePharmaceutical SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

When Is MRI Essential for Prenatal Urinary Imaging?

Boosting O3-Type Cathodes with TiNb2O7 Coating

Boron-Carbide Nanosheets Boost Calcium-Ion Battery Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.