• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Duke awarded NSF rapid grant to develop fast diagnostic test for COVID-19

Bioengineer by Bioengineer
April 27, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biomedical engineers adapt simple, low-cost platform to diagnose the new coronavirus

IMAGE

Credit: Michaela Kane, Duke University

DURHAM, N.C. — Biomedical engineers at Duke University are adapting a rapid testing platform originally designed to detect Ebola to see whether it could be of use in detecting antigens to SARS-Cov-2, the virus that causes COVID-19. The National Science Foundation has awarded them a Rapid Response Research grant to adapt the fast, simple and low-cost diagnostic tool. Inkjet-printed on a small glass slide, the D4 assay is a self-contained diagnostic test that detects low levels of antigens — the specific protein markers created by exposure to a pathogen — from a single drop of blood or from a throat- or nose-swab sample.

In previous studies, the experimental test has been shown to detect a variety of antigens and other biomarkers as accurately as the most sensitive diagnostic tests on the market, but at a much faster rate, potentially shortening the wait time for coronavirus testing from days or hours down to just 30 minutes, according to principal investigator Ashutosh Chilkoti, the Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke.

“We’ve shown a proof-of-concept by detecting a biomarker of the SARS-Cov-2 virus (which causes COVID-19), and the next step would be to validate this with patient samples,” Chilkoti said. “Our test is designed to be truly point-of-care, and this pandemic is clearly a scenario when a portable, fast and cost-effective diagnostic would be most useful.”

The D4 assay tool has two types of antibodies printed on its surface: detection antibodies tagged with a fluorescent marker and capture antibodies, which are primed to find the antigens specific to a pathogen. When a sample is placed on the slide, the detection antibodies separate from the array and bind to the target antigen proteins in the sample. These antibody-antigen complexes then attach to the capture antibodies on the slide, which fluoresce in response to the connection. A handheld scanner is then used to look for lights indicating the presence of the antigen. Unlike other antigen diagnostic tests, the D4 assay is printed on a polymer brush coating, which prevents non-target proteins from attaching to the slide’s surface. This removes any ‘background noise’ on the chip, making it easier to detect low levels of the target proteins.

Chilkoti said that it is difficult to predict when a clinically available test might be available, as that requires FDA approval, but they hope to start testing the technology with COVID patient samples in the next few months.

In preliminary studies with other viruses, including Ebola, the D4 assay has proven about 200- to 500 times better at flagging infected people than other diagnostic tests, according to Duke Engineering doctoral student Cassio Fontes, who helped develop the platform.

The lab has not yet worked with the live SARS-Cov-2 virus that causes COVID-19, but rather with synthetic versions of the proteins it expresses.

“In preliminary tests in early March, we showed that the existing antibodies developed for SARS, another coronavirus that was identified in 2003, could effectively detect and capture synthetic versions of the COVID-19 proteins,” said Fontes. “The connection isn’t perfect, but the D4 is so sensitive that it compensates for the less-than-ideal antibody match and we’re able to get promising results.”

With the $119,000 RAPID grant from NSF (2029361) the team will further optimize and validate their platform with the goal of testing in patients in the next few months in collaboration with Chris Woods, a clinical investigator and Professor of Global Health and Medicine and Chief of the Infectious Diseases Division at the VA Medical Center.

“Challenging times also create opportunities,” Chilkoti said. “Given that this is a huge societal and public health challenge, those of us who create new technologies have a responsibility to act, and we’re grateful that the support from the National Science Foundation allows us address this challenge head-on.”

###

Media Contact
Michaela Kane
[email protected]

Original Source

https://pratt.duke.edu/about/news/duke-engineers-adapt-rapid-testing-platform-see-if-it-can-catch-covid-19

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyDiagnosticsMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.