• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Utilizing the impact resistance of the world’s hardest concrete for disaster prevention

Bioengineer by Bioengineer
April 22, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team including Kanazawa University tests the impact response of the world’s hardest concrete

IMAGE

Credit: Kanazawa University

Kanazawa, Japan – Concrete is the most widely used building material in the world and consequently is being continuously developed to fulfill modern-day requirements. Efforts to improve concrete strength have led to reports of porosity-free concrete (PFC), the hardest concrete tested to date. Some of the basic properties of PFC have already been explored, and now a team including Kanazawa University has probed the impact response of this innovative material. Their findings are published in International Journal of Civil Engineering.

Ultra-high-strength concrete offers significant advantages including reducing the weight of large structures and protecting them against natural disasters and accidental impacts. PFC is an ultra-high-strength concrete whose properties can be further enhanced by incorporating steel fibers.

The way in which PFC is prepared leads to very few voids in the final material, which gives it its high strength–400 MPa can be applied to PFC before it fails, compared with 20-30 MPa for standard concrete. Some of the basic material properties of steel fiber-reinforced PFC have already been reported; now the researchers have evaluated the impact response of a range of PFC preparations with different steel fiber contents and section heights.

“The continued development of building materials is particularly important in areas where frequent natural disasters threaten the integrity of structures,” study lead author Yusuke Kurihashi explains. “We carried out impact tests on a variety of steel fiber-reinforced PFC samples to determine their reactions, and in so doing, accelerate the widespread application of PFC in building projects. Our testing is designed to simulate responses to events such as rock falls, blasts and flying objects.”

The researchers made two key findings. Firstly, they observed that increasing the steel fiber content from 1% to 2% reduced the damage due to the impact by 30%-50%. This significant improvement in performance is expected to inform future material design decisions.

In addition, they showed that it was possible to predict the behavior of the samples with approximately 80% accuracy by comparing calculated values with those that were measured, which will help to streamline development processes.

“We hope that PFC will contribute to enhanced building safety in the future,” says Dr Kurihashi. “Although additional experimental work and statistical processing is required to fully translate PFC into widespread practical applications, our findings make a significant contribution to understanding PFC’s role in improving the safety of many large structures including high-rise buildings, bridges and roads.”

###

Media Contact
Tomoya Sato
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s40999-020-00501-y

Tags: Chemistry/Physics/Materials SciencesCivil EngineeringIndustrial Engineering/ChemistryMaterialsResearch/DevelopmentUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

Culturally-Focused Simulations Boost Empathy in Saudi Nursing Students

November 12, 2025
Snail Genome Duplication Provides Insights into Evolutionary Transitions

Snail Genome Duplication Provides Insights into Evolutionary Transitions

November 12, 2025

Chemo Before Surgery vs. Upfront Surgery: Cholangiocarcinoma Insights

November 12, 2025

Mastering Olympiad Math Through Reinforcement Learning

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Culturally-Focused Simulations Boost Empathy in Saudi Nursing Students

Snail Genome Duplication Provides Insights into Evolutionary Transitions

Chemo Before Surgery vs. Upfront Surgery: Cholangiocarcinoma Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.