• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study shows six decades of change in plankton communities

Bioengineer by Bioengineer
April 2, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Marine Biological Association

The UK’s plankton population – microscopic algae and animals which support the entire marine food web – has undergone sweeping changes in the past six decades, according to new research published in Global Change Biology.

Involving leading marine scientists from across the UK, led by the University of Plymouth, the research for the first time combines the findings of UK offshore surveys such as the Continuous Plankton Recorder (CPR) and UK inshore long-term time-series.

It then maps those observations against recorded changes in sea surface temperature, to demonstrate the effect of our changing climate on these highly sensitive marine communities.

The study’s authors say their findings provide further evidence that increasing direct human pressures on the marine environment – coupled with climate-driven changes – are perturbing marine ecosystems globally.

They also say it is crucial to helping understand broader changes across UK waters, since any shifts in plankton communities have the potential for negative consequences for the marine ecosystem and the services it provides.

Since plankton are the very base of the marine food web, changes in the plankton are likely to result in changes to commercial fish stocks, sea birds, and even the ocean’s ability to provide the oxygen we breathe.

The analyses of plankton functional groups showed profound long-term changes, which were coherent across large geographical areas right around the UK coastline.

For example, the 1998-2017 decadal average abundance of meroplankton, a group of animal plankton, which includes lobsters and crabs and which spend their adult lives on the seafloor, was 2.3 times that for 1958-1967 when comparing CPR samples in the North Sea, at a time of increasing sea surface temperatures.

This contrasted with a general decrease in plankton which spend their whole lives in the water column, while other offshore species noticed population decreases of around 75%.

The study was led by former postdoctoral researcher Dr Jacob Bedford and Dr Abigail McQuatters-Gollop, from the University of Plymouth’s Marine Conservation Research Group. It also involved scientists from The Marine Biological Association, Plymouth Marine Laboratory, The Environment Agency, Marine Scotland Science, Centre for Environment Fisheries and Aquaculture Science (Cefas), Agri-Food & Biosciences Institute of Northern Ireland, and the Scottish Association for Marine Science.

Dr McQuatters-Gollop, the lead scientist for pelagic habitats policy for the UK, said: “Plankton are the base of the entire marine food web. But our work is showing that climate change has caused plankton around UK waters to experience a significant reorganisation. These changes in the plankton suggest alterations to the entire marine ecosystem and have consequences for marine biodiversity, climate change (carbon cycling) and food webs including commercial fisheries.”

Dr Clare Ostle, of the Marine Biological Association’s Continuous Plankton Recorder (CPR) Survey, said: “Changes in plankton communities not only affect many levels of marine ecosystems but also the people that depend on them, notably through the effects on commercial fish stocks. This research is a great example of how different datasets – including CPR data – can be brought together to investigate long-term changes in important plankton groups with increasing temperature. These kind of collaborative studies are important for guiding policy and assessments of our changing environment.”

Report co-author Professor Paul Tett, from the Scottish Association for Marine Science (SAMS) in Oban, added: “In this paper, we have tried to turn decades of speculation into evidence. It has long been thought that warming seas impact on plankton, the most important organisms in the marine food web. By bringing together such a large, long-term dataset from around the UK for the first time, we have discovered that the picture is a complex one. We therefore need to build on the success of this collaboration by further supporting the Continuous Plankton Recorder and the inshore plankton observatories.”

###

Media Contact
Alan Williams
[email protected]

Original Source

https://www.plymouth.ac.uk/news/study-shows-six-decades-of-change-in-uks-plankton-communities

Related Journal Article

http://dx.doi.org/10.1111/gcb.15066

Tags: BiologyClimate ChangeEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.