• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Natural light flicker can help prevent detection

Bioengineer by Bioengineer
April 1, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Bristol

Movement breaks camouflage, making it risky for anything trying to hide. New research, published in the Proceedings of the Royal Society B today [1 April] has shown that dynamic features common in many natural habitats, such as moving light patterns, can reduce being located when moving.
Dynamic illumination is particularly common in coral reefs, where patterns known as ‘water caustics’ play chaotically in the shallows. Researchers from the University of Bristol and the University of Queensland carried out behavioural experiments on the Great Barrier Reef, Australia.

Wild Picasso triggerfish (Rhinecanthus aculeatus), a common reef fish, were trained to locate and attack moving prey items within computer-simulated scenes on a Waterproofed iPad. Each scene contained ‘water caustics’ that varied in terms of motion (static or moving), scale (fine or coarse) and sharpness (sharp or diffuse), to illustrate the diversity of water caustics seen in natural habitats.

The presence of water caustics significantly increased the time for triggerfish to attack moving prey items compared to static caustic controls. Moreover, manipulating the sharpness and scale of water caustics implies that this delay should be maximised in shallow water: scenes with fine scale and sharp water caustics induced the longest attack latencies.

Dr Sam Matchette, a former PhD student in the University of Bristol’s School of Biological Sciences and lead author, said: “Our research is the first to address the impacts of dynamic underwater illumination upon fish behaviour and directly assesses how visual features of water caustics can affect visually guided behaviour.”

While being stationary remains the optimal strategy for the concealment of cryptic organisms, the findings here highlight conditions under which the disadvantage of moving can be reduced to some degree.

Dr Matchette added: “Due to the direct impact upon foraging efficiency, we predict that the presence of dynamic water caustics will have important consequences for decision-making regarding habitat choice and foraging by both wild prey and predators.”

###

The research was supported by a CASE studentship and research grant from the Engineering and Physical Sciences Research Council (EPSRC) and QinetiQ.

Media Contact
Joanne Fryer, University of Bristol
[email protected]

Related Journal Article

http://dx.doi.org/10.1098/rspb.2019.2453

Tags: BiologyMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking the Language of Molecules

Tracking the Language of Molecules

August 22, 2025
Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Area 46: The Hub of Emotion Regulation in Marmosets

New Insights into the Cumulative HBsAg/HBV DNA Ratio in Immune-Tolerant Hepatitis B Patients

Anti-PD-1 Boosts Gastric Cancer with Hepatitis B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.