• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Natural light flicker can help prevent detection

Bioengineer by Bioengineer
April 1, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Bristol

Movement breaks camouflage, making it risky for anything trying to hide. New research, published in the Proceedings of the Royal Society B today [1 April] has shown that dynamic features common in many natural habitats, such as moving light patterns, can reduce being located when moving.
Dynamic illumination is particularly common in coral reefs, where patterns known as ‘water caustics’ play chaotically in the shallows. Researchers from the University of Bristol and the University of Queensland carried out behavioural experiments on the Great Barrier Reef, Australia.

Wild Picasso triggerfish (Rhinecanthus aculeatus), a common reef fish, were trained to locate and attack moving prey items within computer-simulated scenes on a Waterproofed iPad. Each scene contained ‘water caustics’ that varied in terms of motion (static or moving), scale (fine or coarse) and sharpness (sharp or diffuse), to illustrate the diversity of water caustics seen in natural habitats.

The presence of water caustics significantly increased the time for triggerfish to attack moving prey items compared to static caustic controls. Moreover, manipulating the sharpness and scale of water caustics implies that this delay should be maximised in shallow water: scenes with fine scale and sharp water caustics induced the longest attack latencies.

Dr Sam Matchette, a former PhD student in the University of Bristol’s School of Biological Sciences and lead author, said: “Our research is the first to address the impacts of dynamic underwater illumination upon fish behaviour and directly assesses how visual features of water caustics can affect visually guided behaviour.”

While being stationary remains the optimal strategy for the concealment of cryptic organisms, the findings here highlight conditions under which the disadvantage of moving can be reduced to some degree.

Dr Matchette added: “Due to the direct impact upon foraging efficiency, we predict that the presence of dynamic water caustics will have important consequences for decision-making regarding habitat choice and foraging by both wild prey and predators.”

###

The research was supported by a CASE studentship and research grant from the Engineering and Physical Sciences Research Council (EPSRC) and QinetiQ.

Media Contact
Joanne Fryer, University of Bristol
[email protected]

Related Journal Article

http://dx.doi.org/10.1098/rspb.2019.2453

Tags: BiologyMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Familiarity and Size Shape Women’s Dog Communication

Familiarity and Size Shape Women’s Dog Communication

January 19, 2026
Root-Knot Nematode Uses Soil Microbes to Locate Hosts

Root-Knot Nematode Uses Soil Microbes to Locate Hosts

January 19, 2026

KRAS Identified as Key Regulator in Ovarian Follicle Development

January 19, 2026

Novel nOPV2 Shows Higher Stability Amid Neurovirulent Strain

January 19, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Familiarity and Size Shape Women’s Dog Communication

Air Pollution Linked to Increased Breast Cancer Risk

Advancing Quality by Design in Amorphous Solid Dispersions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.