• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bacteria might help other bacteria to tolerate antibiotics better

Bioengineer by Bioengineer
March 12, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study by the the Dynamical Systems Biology lab reveals that when the 2 species of bacteria coexist, their response to the antibiotic is opposite to when they are alone

IMAGE

Credit: Image author: Letícia Galera-Laporta.


A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics. The study, which was conducted by the researchers Letícia Galera-Laporta and Jordi Garcia-Ojalvo and is published today in the journal Science Advances, may affect the treatment of bacterial infections, even suggesting new strategies to combat these pathogens.

Since the discovery of penicillin almost 90 years ago, antibiotics have saved millions of lives. The required concentration of each antibiotic to eliminate a wide variety of species of bacteria is currently known in detail. These analyses are usually performed in cultures where each species of bacteria lives alone. However, infections are often comprised of more than one species of bacteria, with many species being present at the same time that can interact, sharing all types of chemical signals. In addition, our body contains a large number of beneficial bacteria (microbiota), with which pathogens can also coexist. Therefore, in this study, the researchers examined how communities of multiple species of bacteria respond jointly to antibiotics.

To address this question, Galera-Laporta and Garcia-Ojalvo studied how the bacteria Bacillus subtilis and Escherichia coli respond to the antibiotic ampicillin (penicillin family). Alone, E. coli is sensitive to this antibiotic -beyond a certain concentration it cannot grow- and B. subtilis is tolerant -it manages to grow-. Letícia-Galera Laporta explains that “counterintuitively, we observed that when the two species of bacteria coexist, their response to the antibiotic is opposite to when they are alone. The bacteria that could survive dies and vice versa”. With the help of a mathematical model, they saw that what varies is the collective response, as a result of the change in the availability of the drug for each species of bacteria in the presence of the other.

Two bacteria coexist… and one of them takes advantage

Ampicillin inactivates certain proteins required for bacteria to manufacture their cell wall and thus prevents the latter from growing. Bacillus subtilis tolerates this antibiotic because it inactivates the antibiotic and reduces the free amount circulating in the environment. This benefits E. coli when the two species coexist, because it makes the amount of ampicillin not reach the threshold needed to kill it.

In contrast, E. coli is not able to inactivate the antibiotic, rather it acts like a sponge: it retains the antibiotic for a while and then returns it to the environment. This buffer role delays the suppression of the antibiotic in the environment, and therefore harms B. subtilis: it makes the antibiotic remain in the environment for a period in which B. subtilis would have eliminated had it been alone.

Most studies of this kind focus on genetic resistance to antibiotics through mutations, which is a very important aspect. “But through studies like these, we wish to show the importance of not losing sight of the fact that bacteria’s survival of antibiotics can be due to other, non-genetic mechanisms”, explains Jordi Garcia-Ojalvo, full professor of Systems Biology at the Department of Experimental and Health Sciences (DCEXS) at UPF.

The mechanisms shown in this study are not specific to the two species of bacteria and the antibiotics used. This finding bears out the difficulty of choosing the correct antibiotic dose in treating bacterial infections, because the available information refers to species when they are found alone. On the other hand, the study also suggests the possibility of using non-pathogenic bacteria to sensitize others that are harmful. In short, “we must consider the microbial context in which the bacteria are found, in order to improve the information that enables choosing the appropriate dose of antibiotic in each case”, Garcia-Ojalvo concludes.

###

Media Contact
Maria del Carme Cebrián
[email protected]

Original Source

https://www.upf.edu/home/-/asset_publisher/1fBlrmbP2HNv/content/id/232974084/maximized#.XmoVC6hKiUk

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaz5108

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Two Minor Innovations That Could Revolutionize Agriculture

November 5, 2025

Cytogenetic Abnormalities in Lebanese Multiple Myeloma

November 5, 2025

Enhanced Patient-Specific Mandible Plates: A Proven Framework

November 5, 2025

Two Key Gene Discovery Methods Uncover Complementary Biological Insights

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two Minor Innovations That Could Revolutionize Agriculture

Cytogenetic Abnormalities in Lebanese Multiple Myeloma

Enhanced Patient-Specific Mandible Plates: A Proven Framework

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.