• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bacteria might help other bacteria to tolerate antibiotics better

Bioengineer by Bioengineer
March 12, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study by the the Dynamical Systems Biology lab reveals that when the 2 species of bacteria coexist, their response to the antibiotic is opposite to when they are alone

IMAGE

Credit: Image author: Letícia Galera-Laporta.


A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics. The study, which was conducted by the researchers Letícia Galera-Laporta and Jordi Garcia-Ojalvo and is published today in the journal Science Advances, may affect the treatment of bacterial infections, even suggesting new strategies to combat these pathogens.

Since the discovery of penicillin almost 90 years ago, antibiotics have saved millions of lives. The required concentration of each antibiotic to eliminate a wide variety of species of bacteria is currently known in detail. These analyses are usually performed in cultures where each species of bacteria lives alone. However, infections are often comprised of more than one species of bacteria, with many species being present at the same time that can interact, sharing all types of chemical signals. In addition, our body contains a large number of beneficial bacteria (microbiota), with which pathogens can also coexist. Therefore, in this study, the researchers examined how communities of multiple species of bacteria respond jointly to antibiotics.

To address this question, Galera-Laporta and Garcia-Ojalvo studied how the bacteria Bacillus subtilis and Escherichia coli respond to the antibiotic ampicillin (penicillin family). Alone, E. coli is sensitive to this antibiotic -beyond a certain concentration it cannot grow- and B. subtilis is tolerant -it manages to grow-. Letícia-Galera Laporta explains that “counterintuitively, we observed that when the two species of bacteria coexist, their response to the antibiotic is opposite to when they are alone. The bacteria that could survive dies and vice versa”. With the help of a mathematical model, they saw that what varies is the collective response, as a result of the change in the availability of the drug for each species of bacteria in the presence of the other.

Two bacteria coexist… and one of them takes advantage

Ampicillin inactivates certain proteins required for bacteria to manufacture their cell wall and thus prevents the latter from growing. Bacillus subtilis tolerates this antibiotic because it inactivates the antibiotic and reduces the free amount circulating in the environment. This benefits E. coli when the two species coexist, because it makes the amount of ampicillin not reach the threshold needed to kill it.

In contrast, E. coli is not able to inactivate the antibiotic, rather it acts like a sponge: it retains the antibiotic for a while and then returns it to the environment. This buffer role delays the suppression of the antibiotic in the environment, and therefore harms B. subtilis: it makes the antibiotic remain in the environment for a period in which B. subtilis would have eliminated had it been alone.

Most studies of this kind focus on genetic resistance to antibiotics through mutations, which is a very important aspect. “But through studies like these, we wish to show the importance of not losing sight of the fact that bacteria’s survival of antibiotics can be due to other, non-genetic mechanisms”, explains Jordi Garcia-Ojalvo, full professor of Systems Biology at the Department of Experimental and Health Sciences (DCEXS) at UPF.

The mechanisms shown in this study are not specific to the two species of bacteria and the antibiotics used. This finding bears out the difficulty of choosing the correct antibiotic dose in treating bacterial infections, because the available information refers to species when they are found alone. On the other hand, the study also suggests the possibility of using non-pathogenic bacteria to sensitize others that are harmful. In short, “we must consider the microbial context in which the bacteria are found, in order to improve the information that enables choosing the appropriate dose of antibiotic in each case”, Garcia-Ojalvo concludes.

###

Media Contact
Maria del Carme Cebrián
[email protected]

Original Source

https://www.upf.edu/home/-/asset_publisher/1fBlrmbP2HNv/content/id/232974084/maximized#.XmoVC6hKiUk

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaz5108

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.