• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How does flow effect forces of charged surfaces/particles and surfactants in liquids?

Bioengineer by Bioengineer
March 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright © 2020 American Chemical Society


You’re at the office. You’ve typed up a report and press print. Walk over to the printer and retrieve the fresh, inkjet-printed paper. As you admire your work, were you aware that scientists consider the charge of the particles in the liquid ink for improved print quality? Were you aware that understanding charges of particles allows for engineers to make the paints aggregate (gather together) or disperse according to such particle interactions?

A surfactant is something that is added to a liquid (in this study), to make it act with other surfaces. People use surfactants daily at home with soaps, detergents and shampoos to aid in lifting grime off of surfaces. Surfactants also have important industrial uses such as in the lining of pipelines to reduce drag. As one can imagine, understanding how the effect of charges of particles in liquid can have significant impact on how well surfactants work and systems run efficiently. Until now, there was an absence of exploration into how the flow of liquids effect the charges of the particles in the liquid, surfaces and surfactants.

To investigate flow, Cathy McNamee and Hayato Kawakami of Shinshu University built an apparatus where they combined an Atomic Force Microscope, peristaltic pump and camera to visually capture the liquid in the process of flow. They used silica particles and silicon wafers, both with negatively charged surfaces in the presence of ionic surfactants. An ionic surfactant has a “head” that attracts water and a “tail” that repels water. A negative and positive surfactant of the same chain length was used to determine the effect of the charge on the forces, sodium dodecyl sulfate (anionic surfactant) and dodecyl trimethylammonium bromide (cationic surfactant).

McNamee and Kawakami were able to determine that:

    * The adsorption of the surfactants to the particles can change when the liquid flow changes the forces between charged particles.

    * When the charge of the surfactant was the same as the surface, liquid flow did not increase the adsorption of the surfactants to the particle surfaces, but increased the number of ions near the surfaces. The inter-particle repulsive forces slightly decreased.

    * When the charge of the surfactant was opposite to the particles, a low concentration of surfactant flow increased the adsorption of the surfactants to the particle surfaces. This changed the inter-particle forces and could change attractions to repulsions if the appropriate surfactant concentration was used. With high surfactant concentrations where the charge of the surfaces change in the absence of flow, flow tended to increase the stiffness of the film of the adsorbed surfactants.

    * It might be possible to control the aggregating ability of charged particles with the flow rate if the appropriate surfactant type and concentration is used.

Professor McNamee found that the flow rate can possibly be used to control the aggregation and dispersion of charged particles, allowing for less surfactant use. During real world uses such as water treatment, it is possible to remove impurities and harmful substances by using charges to gather or repel certain substances. Even our bodies cleverly use surfactants, too. Bile salts, (a surfactant!) aids in digestion. The potential applications of this research range from medicine, such as flow cytometer to all aspects of industry.

###

More details can be found on the cover paper of the March issue of Langmuir.

This work was performed by Cathy McNamee and Hayato Kawakami (master’s student in Applied Chemistry of Shinshu University at the time of research) at Shinshu University.

This research was accepted in the ACS journal of Langmuir, and is now available on-line on the Langmuir website. An image depicting this work was also chosen for the supplementary cover of this journal issue.

[authors] Cathy E. McNamee* and Hayato Kawakami (* corresponding author)

[Title] Effect of the Surfactant Charge and Concentration on the Change in the Forces between Two Charged Surfaces in Surfactant Solutions by a Liquid Flow

[Journal] Langmuir, 2020, in press.

DOI: https://doi.org/10.1021/acs.langmuir.9b03377

The authors would like to thank and acknowledge Dr. Shinpei Yamamoto (Sankei Giken Kogyo Co., Ltd., Japan) for fruitful discussions. This study was performed using the JSPS KAKENHI Scientific Research C (General) research grant number 19K05264 entitled “Effect of liquid flow on the forces and physical properties of surfaces in liquids”.

E-mail: [email protected]

Media Contact
Hitomi Thompson
[email protected]
81-263-373-529

Related Journal Article

http://dx.doi.org/10.1021/acs.langmuir.9b03377

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Kono Honored with American Physical Society’s Isakson Prize

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Disparities in Cancer Care Quality Among Incarcerated Individuals

AI Accelerates Antibody Design to Combat Emerging Viruses, According to New Study

Commonly Used Pesticides Linked to Reduced Sperm Count

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.