• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Robot uses artificial intelligence and imaging to draw blood

Bioengineer by Bioengineer
March 4, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers engineers create device that can also insert catheters

IMAGE

Credit: Martin Yarmush and Alvin Chen


Rutgers engineers have created a tabletop device that combines a robot, artificial intelligence and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.

Their most recent research results, published in the journal Nature Machine Intelligence, suggest that autonomous systems like the image-guided robotic device could outperform people on some complex medical tasks.

Medical robots could reduce injuries and improve the efficiency and outcomes of procedures, as well as carry out tasks with minimal supervision when resources are limited. This would allow health care professionals to focus more on other critical aspects of medical care and enable emergency medical providers to bring advanced interventions and resuscitation efforts to remote and resource-limited areas.

“Using volunteers, models and animals, our team showed that the device can accurately pinpoint blood vessels, improving success rates and procedure times compared with expert health care professionals, especially with difficult to access blood vessels,” said senior author Martin L. Yarmush, Paul & Mary Monroe Chair & Distinguished Professor in the Department of Biomedical Engineering in the School of Engineering at Rutgers University-New Brunswick.

Getting access to veins, arteries and other blood vessels is a critical first step in many diagnostic and therapeutic procedures. They include drawing blood, administering fluids and medications, introducing devices such as stents and monitoring health. The timeliness of procedures can be critical, but gaining access to blood vessels in many people can be quite challenging.

Failures occur in an estimated 20 percent of procedures, and difficulties increase in people with small, twisted, rolling or collapsed blood vessels, which are common in pediatric, elderly, chronically ill and trauma patients, the study says. In these groups, the first-stick accuracy rate is below 50 percent and at least five attempts are often needed, leading to delays in treatment. Bleeding complications can arise when major adjacent arteries, nerves or internal organs are punctured, and the risk of complication rises significantly with multiple attempts. When nearby blood vessels are inaccessible, more invasive approaches such as central venous or arterial access are often required.

The robotic device can accurately steer needles and catheters into tiny blood vessels with minimal supervision. It combines artificial intelligence with near-infrared and ultrasound imaging to perform complex visual tasks, including identifying the blood vessels from the surrounding tissue, classifying them and estimating their depth, followed by motion tracking. In other published work, the authors have shown that the device can serve as a platform to merge automated blood-drawing and downstream analysis of blood.

Next steps include more research on the device in a broader range of people, including those with normal and difficult blood vessels to access.

“Not only can the device be used for patients, but it can also be modified to draw blood in rodents, a procedure which is extremely important for drug testing in animals in the pharmaceutical and biotech industries,” Yarmush said.

###

The lead author is Alvin Chen, who earned a doctorate at Rutgers. Co-authors include Max L. Balter and Timothy J. Maguire, who also earned doctorates at Rutgers, all under the supervision of Yarmush.

Media Contact
Todd Bates
[email protected]
848-932-0550

Original Source

https://www.rutgers.edu/news/robot-uses-artificial-intelligence-and-imaging-draw-blood

Related Journal Article

http://dx.doi.org/10.1038/s42256-020-0148-7

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsElectromagneticsMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.