• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop enzyme produced from agricultural waste for use as laundry detergent

Bioengineer by Bioengineer
February 25, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Portsmouth


An international team of researchers has developed an enzyme produced from agricultural waste that could be used as an important additive in laundry detergents.

By using an enzyme produced from a by-product of mustard seeds, they hope to develop a low-cost naturally derived version of lipase, the second largest commercially produced enzyme, which is used in various industries for the production of fine chemicals, cosmetics, pharmaceuticals and biodiesel including detergents.

Thousands of tons of lipase are used annually for the production of laundry detergents as an additive or to replace the chemical detergents because of its advantage of being eco-friendly and better ability to remove oil stains without harming the texture of the cloth.

Lipase is one of the most rapidly growing industrial enzymes in the market and is worth $590.5million. However, the cost of biotechnologically produced lipases has always been a challenge, mainly due to the high cost of feedstocks.

In this collaborative project, Dr Pattanathu Rahman, a microbial biotechnologist from the Centre for Enzyme Innovation at the University of Portsmouth worked with Professor Subudhi and scientists from the Centre for Biotechnology at Siksha O Anusandhan University in Odisha, India, where Dr Rahman is also a visiting Professor.

They examined a lipase produced from mustard oil cakes, which are the by-products of oil extraction from the mustard seeds. Oil cakes are a very good resource for growth of microbes to produce enzymes. They fermented the oil cakes with the bacteria Anoxybacillus sp. ARS-1, living in a tropical hot spring Taptapani, Odisha, India to produce the lipase enzyme.

Mustard are the third most produced oilseed crops in the world after soybean and palm oil seed. These seeds are produced in tropical countries such as Bangladesh, Pakistan and Northern India. The mustard oil extracted from the seeds are used as cooking oils. Oil cakes that are the by-products of oil extraction contain relatively high amounts of protein with small amounts of anti-nutritional compounds like glucosinolates and their breakdown products, phenolics and phytates.

Dr Rahman said: “We further investigated suitability of the lipase enzyme in detergent formulations. Anoxybacillus sp. ARS-1 produced lipase was found to be stable and resist almost all chemical detergents as well as common laundry detergent such as Ezee, Surf, Ariel and Ghadhi, proving it to be a prospective additive for incorporation in the new detergent formulations.”

###

The study ‘Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive’ is published in the journal Preparative Biochemistry & Biotechnology.

Media Contact
Glenn Harris
[email protected]
0239-284-2728

Related Journal Article

http://dx.doi.org/10.1080/10826068.2020.1719513

Tags: Agricultural Production/EconomicsBiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diabetic Patients in Upper Egypt: Adherence and Perception Insights

Movement Skills Boost Executive Function in Autistic Kids

Mayo Clinic Secures Up to $40 Million from ARPA-H to Advance Groundbreaking Air Safety Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.