• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Technique can label many specific DNAs, RNAs, or proteins in a single tissue sample

Bioengineer by Bioengineer
February 18, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Harvard’s Wyss Institute developed a method to multiplex imaging of specific and rare molecules in samples, which offers the potential to advance basic biology, biomarker discovery, and clinical diagnostics

IMAGE

Credit: Image courtesy of Peng Yin and Sinem K. Saka.


SAN DIEGO, CA – A new technique can label diverse molecules and amplify the signal to help researchers spot those that are especially rare. Called SABER (signal amplification by exchange reaction), Peng Yin’s lab at Harvard’s Wyss Institute first introduced this method last year and since have found ways to apply it to proteins, DNA and RNA. Yin will explain how engineered DNA nanotechnology, including SABER, can help scientists analyze the molecular landscape on Tuesday, February 18 at the 64th Annual Meeting of the Biophysical Society in San Diego, California.

To understand how our bodies function normally or during disease at the cellular and molecular levels, being able to visualize a range of molecules is essential. There are currently methods to do this, but each has its limitations. It is especially difficult to see low-abundance molecules, which give a weak or non-detectable signal when a single fluorescent probe attaches. It is also challenging to see many molecules simultaneously or look for infrequent molecules in large and complex tissue samples, like tumor biopsies. These limitations inspired Peng Yin to design and develop new nanotechnologies.

SABER is a nanotechnology employing customized DNA templates that can attach to molecules of interest. Each DNA template also has targets for adding fluorescent probes, which can be designed to have a branching pattern to accommodate more fluorescent probes, thereby making it easier to detect rare molecules. In the first demonstration of SABER technology, Yin and colleagues targeted DNA and RNA sequences in mouse retina and also visualized 17 different target regions simultaneously on the human X-chromosome. This is a significant improvement over the conventional method, known as FISH (fluorescence in situ hybridization), which had a hard time detecting rare sequences, especially in thick tissue, and was limited to one fluorescent probe.

To use SABER to detect proteins, Yin and colleagues attached short DNA handles to antibodies. The antibodies bind specifically to proteins, then the SABER process can add DNA sequences in a branching pattern to add fluorescent molecules. They named the technique immuno-SABER. Unlike standard immuno-florescence, in which only five proteins can typically be labelled in the same sample, by coupling immuno-SABER to a DNA exchange method, they labeled ten proteins in the same retina sample.

Because of its speed, low cost, and ability to detect many low-abundance molecules in the same sample, SABER offers the possibility of high-throughput screening, which could advance basic biology, biomarker discovery, and clinical diagnostics, Yin says. And someday, says Yin, “SABER could be useful for matching patients with optimal treatments based on the spatial pattern of protein markers. For example, for cancer, the tumor microenvironment can be characterized by the spatial expression pattern of the protein markers, which could inform immunotherapy treatment.”

###

Media Contact
Leann Fox
[email protected]
202-256-1417

Original Source

https://www.biophysics.org/news-room?ArtMID=802&ArticleID=9149&preview=true

Tags: BiochemistryBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyGenesGeneticsMedicine/HealthNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Trapped in a Social Media Echo Chamber? A New Study Reveals How AI Can Offer an Escape

August 15, 2025
Rewrite Rethinking how medicine can approach aging this news headline for the science magazine post

Rewrite Rethinking how medicine can approach aging this news headline for the science magazine post

August 15, 2025

Rewrite FDA-approved MI cancer seek test enhances tumor profiling for precision oncology this news headline for the science magazine post

August 15, 2025

Rewrite Solved: 90-year-old mystery in quantum physics this news headline for the science magazine post

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Trapped in a Social Media Echo Chamber? A New Study Reveals How AI Can Offer an Escape

Rewrite Rethinking how medicine can approach aging this news headline for the science magazine post

Rewrite FDA-approved MI cancer seek test enhances tumor profiling for precision oncology this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.