• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Studying electrons, bridging two realms of physics: connecting solids and soft matter

Bioengineer by Bioengineer
February 13, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists explain how exotic phenomena involving electrons in certain solid systems are similar to particles in certain liquid systems or soft matter

IMAGE

Credit: Professor Tetsuaki Itou


Electrons are interesting particles that can modify their behavior according to their condition of existence. For instance, in a phenomenon called the Mott-transition, electrons begin to interact differently with their neighbors and surroundings in a material. Normally, the electrons in a material have low levels of interaction with each other and therefore, move freely enough for the material to conduct electricity (and the material shows metallic properties). But under certain conditions, these same electrons begin to have high levels of interaction with each other and their movement becomes restricted. This causes the material to become an insulator. The alteration of the properties of the material is called the Mott-transition.

At the Mott-transition, certain phenomena such as high-temperature superconductivity and giant magnetoresistance are seen, which have massive industrial applications. Thus, studying these phenomena is essential. But to truly discover these phenomena, it is important to understand electron behavior in disordered materials (materials in which the arrangement of the constituent particles is interrupted at points over the long range).

A group of scientists from Tokyo University of Science, The University of Tokyo, and Tohoku University in Japan, led by Prof Tetsuaki Itou, recently set out to investigate exactly this. They used a quasi-two-dimensional organic Mott-insulator called κ-(ET)2Cu[N(CN)2]Cl (hereafter κCl), whose disorder and electron interaction level they independently controlled by irradiating the material with x-rays and applying pressure, respectively. When they irradiated κCl with x-rays for 500 hours, they found that electron movement slowed down by a factor ranging from one million to one hundred million. This meant that its electrons begin to behave peculiarly, as though they’re the constituent particles of soft matter (e.g., polymers, gels, cream, etc.). When the scientists applied pressure on the irradiated κCl, the electron behavior returned to normal.

From these observations, the scientists deduced that for electrons in solids to behave like the particles of soft matter, two factors are essential: the material must be in the vicinity of the Mott-transition point and there must be disorder. The simultaneous existence of these two factors is a manifestation of a phenomenon similar to the Griffiths phase, which has already been established for magnetic materials. What the researchers found here is evidence for its electronic analog: the electronic Griffiths phase. “Our results provide experimental evidence that the Griffiths scenario is also applicable to Mott-transition systems” remarks Prof Itou.

This exciting new study is published in Physical Review Letters under “Editors’ Suggestion”, which is suggested by the journal when the study is interesting and important. The study represents a bridge between condensed matter physics and soft matter physics, which have hitherto developed completely independently. “We expect that, with the publication of our study, further discussions linking these disciplines will be carried out,” says Prof Itou. The insights gained from this study may allow scientists to explain the mechanisms underlying these exotic phenomena, which could have very powerful applications, not the least of which involves opening doors to whole new possibilities in a much wider realm of physics.

###

Further Information

Professor Tetsuaki Itou

Department of Applied Physics

Tokyo University of Science

Email: [email protected]

Professor Takahiko Sasaki

Institute for Materials Research

Tohoku University

Email: [email protected]

Professor Kazushi Kanoda

Department of Applied Physics

The University of Tokyo

Email: [email protected]

Media contact

Tsutomu Shimizu

Public Relations Divisions

Tokyo University of Science

Email: [email protected]

Website: https://www.tus.ac.jp/en/mediarelations/

Institute for Materials Research

Tohoku University

Email: [email protected]

Office of Public Relations

School of Engineering

The University of Tokyo

Email: [email protected]

Funding information

This work was supported in part by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (Grant Nos. 25220709, 17K05532, 18H05225, and 19H01833).

Media Contact
Tsutomu Shimizu
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.124.046404

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsParticle PhysicsPolymer ChemistrySuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neighboring Groups Speed Up Polymer Self-Deconstruction

Retinal Changes Mirror Brain Damage in Parkinson’s Rats

NEK7 Links SDHB to Prevent Liver Fibrosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.