• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bush-crickets’ ears unlock the science to developing revolutionary hearing sensors

Bioengineer by Bioengineer
February 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr Thorin Jonsson


New research has found that bush-crickets’ ear canals have evolved to work in the same way as mammals’ ears to amplify sound and modulate sound pressure – and the findings could help scientists make better acoustic sensors for human use.

Bush-crickets are insects that depend on acoustic communication for survival, with the males singing to attract distant females. They have very small ‘ears’ in their forelegs, which work in a similar way to humans with an outer, middle and inner ear, and many species have transparent ‘skins’, enabling scientists to measuring ear processes.

An international team of sensory biologists and mathematicians found that the insects’ horn-shaped outer ear, called the acoustic trachea tube, captures sound in the same way as mammals’ ear canals by amplifying and transforming the pressure waves, which are then passed along to the surface of the eardrum to provide the animal with directional hearing.

Until now, the mechanism responsible for such changes in sound pressure levels which affects directional hearing has been unknown. The findings could revolutionise how auditory devices identify the location or origin of a detected sound, aiding the challenging design of wireless acoustic sensor networks used for monitoring and surveillance purposes.

The team carried out the study on a species called Copiphora gorgonensis, which are found in the Colombian rainforest. They used 3D x-ray imaging to capture the structure of the bush-cricket’s ears, coupled with mathematical analysis to determine how the sound worked inside the acoustic tube.

The research was part of a €1.9million European Research Council-funded project led by Professor Fernando Montealegre-Zapata, an entomologist specialising in sensory biology and biophysics at the University of Lincoln, UK. It was carried out in partnership with the University of Bristol, and University of Graz in Austria.

Dr Emine Celiker, a Research Fellow in numerical modelling in the School of Life Sciences at the University of Lincoln, conducted the study. She said: “The research is the first step in using combined experimental and mathematical techniques to determine the mechanism crickets use to hear their species’ songs.

“Our findings provide a strong indication that the bush-cricket ear processes sound in the same way a mammal’s does, making its study vital for the development of new auditory sensors. We were able to take recordings of the auditory process using laser doppler vibrometry which measures the vibrations of soundwaves on the surface of the ear canal.

“By applying mathematical modelling of the ears combined with real-life experiments, we also found that the ear canal filters out sound frequencies relevant to the species’ survival, selectively amplifying only frequencies that are behaviourally relevant for the animals – like their mating song or the high-frequency calls of predatory bats.

“Traditionally it is well known that horns increase the volume of sound, and for bush-cricket hearing it has been suspected that this is also the case due to the geometry of its acoustic tube. We verified this after a thorough investigation of the processes involved in the sound amplification. The findings have huge potential to be applied in enhancing acoustic sensors such listening devices.”

The findings have been published in Biophysical Journal.

###

Media Contact
Cerri Evans
[email protected]
0044-012-558-86165

Related Journal Article

http://dx.doi.org/10.1016/j.bpj.2019.11.3394

Tags: Algorithms/ModelsBiomechanics/BiophysicsComputer ScienceEntomologyHearing/SpeechResearch/DevelopmentSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/DesignZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.