• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists resurrect mammoth’s broken genes

Bioengineer by Bioengineer
February 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research builds on evidence that the last mammoths on a lonely Arctic island suffered from a variety of genetic defects

IMAGE

Credit: Rebecca Farnham / University at Buffalo


BUFFALO, N.Y. — Some 4,ooo years ago, a tiny population of woolly mammoths died out on Wrangel Island, a remote Arctic refuge off the coast of Siberia.

They may have been the last of their kind anywhere on Earth.

To learn about the plight of these giant creatures and the forces that contributed to their extinction, scientists have resurrected a Wrangel Island mammoth’s mutated genes. The goal of the project was to study whether the genes functioned normally. They did not.

The research builds on evidence suggesting that in their final days, the animals suffered from a medley of genetic defects that may have hindered their development, reproduction and their ability to smell.

The problems may have stemmed from rapid population decline, which can lead to interbreeding among distant relatives and low genetic diversity — trends that may damage a species’ ability to purge or limit harmful genetic mutations.

“The key innovation of our paper is that we actually resurrect Wrangel Island mammoth genes to test whether their mutations actually were damaging (most mutations don’t actually do anything),” says lead author Vincent Lynch, PhD, an evolutionary biologist at the University at Buffalo. “Beyond suggesting that the last mammoths were probably an unhealthy population, it’s a cautionary tale for living species threatened with extinction: If their populations stay small, they too may accumulate deleterious mutations that can contribute to their extinction.”

The study was published on Feb. 7 in the journal Genome Biology and Evolution.

Lynch, an assistant professor of biological sciences in the UB College of Arts and Sciences, joined UB in 2019 and led the project while he was at the University of Chicago. The research was a collaboration between Lynch and scientists at the University of Chicago, Northwestern University, University of Virginia, University of Vienna and Penn State. The first authors were Erin Fry from the University of Chicago and Sun K. Kim from Northwestern University.

To conduct the study, Lynch’s team first compared the DNA of a Wrangel Island mammoth to that of three Asian elephants and two more ancient mammoths that lived when mammoth populations were much larger.

The researchers identified a number of genetic mutations unique to the Wrangel Island mammoth. Then, they synthesized the altered genes, inserted that DNA into cells in petri dishes, and tested whether proteins expressed by the genes interacted normally with other genes or molecules.

The scientists did this for genes that are thought or known to be involved in a range of important functions, including neurological development, male fertility, insulin signaling and sense of smell.

In the case of detecting odors, for example, “We know how the genes responsible for our ability to detect scents work,” Lynch says. “So we can resurrect the mammoth version, make cells in culture produce the mammoth gene, and then test whether the protein functions normally in cells. If it doesn’t — and it didn’t — we can infer that it probably means that Wrangel Island mammoths were unable to smell the flowers that they ate.”

The research builds on prior work by other scientists, such as a 2017 paper in which a different research team identified potentially detrimental genetic mutations in the Wrangel Island mammoth, estimated to be a part of a population containing only a few hundred members of the species.

“The results are very complementary,” Lynch says. “The 2017 study predicts that Wrangel Island mammoths were accumulating damaging mutations. We found something similar and tested those predictions by resurrecting mutated genes in the lab. The take-home message is that the last mammoths may have been pretty sick and unable to smell flowers, so that’s just sad.”

###

Media Contact
Charlotte Hsu
[email protected]
716-645-4655

Original Source

http://www.buffalo.edu/news/releases/2020/02/002.html

Related Journal Article

http://dx.doi.org/10.1093/gbe/evz279

Tags: BiochemistryBiodiversityBiologyEcology/EnvironmentEvolutionGenesGeneticsMolecular BiologyPaleontologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.