• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Invisible X-rays turn blue

Bioengineer by Bioengineer
February 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tsuyoshi Kawai


A new reaction system can detect X-rays at the highest sensitivity ever recorded by using organic molecules. The system, developed by researchers at Nara Institute of Science and Technology (NAIST), Ikoma, Japan, and Centre National de la Recherche Scientfique (CNRS), Toulouse, France, involves the cycloreversion of terarylene, causing the molecule to switch reversibly between colorless and blue isoforms in the presence or absence of X-rays. With detection at safe doses, this reaction system is expected to detect even the faintest X-rays levels considered dangerous.

Photoreactive materials convert light input into chemical output and are standard in semiconductor and 3D printing technologies. Some of these materials are also used in eye-protection, such as how sunglasses can reduce UV exposure by changing the lens color. Similarly, workers at risk to X-ray radiation are required to wear monitoring badges that indicate dangerous levels through changes in photoreactive materials.

However, NAIST Professor Tsuyoshi Kawai stresses that these badges do not completely eliminate the risk.

“Current materials for wearable detectors are sensitive to about 1 Gy. Ideally, safety management systems want about one hundred times more sensitivity,” he says.

Kawai is an expert at increasing the photoconversion efficiency of photoreactive molecules, having focused his attention primarily on terarylenes, organic molecules with which his research team has consistently achieved exceptionally high reaction efficiencies.

“We have steadily improved the number of molecules that can undergo photoconversion in response to one photon. It was one to one in 2011 and today it becomes 33 molecules per one photon,” he says.

To increase the quantum yield of terarylenes, is to maximize the number of changes that can be induced by a single photon. They have selected terarylenes because of their reversibility, meaning that the molecule can be converted back to the starting blue isoform upon exposure to ultraviolet light allowing for the system to be reset for repeated use.

Indeed, the color change is one of several reasons he believes organic molecules are preferable when considering X-ray detectors.

“Photochromic organic detectors can report X-rays through easily observed color changes and are recyclable and easy to process,” he says.

The key modification to the terarylene molecules was the addition of a phenyl group to only one of the molecules two phenylthiophene groups, which allowed for reversible photoconversion between two isoforms. The result was a sensitivity of up to 0.3 Gy, making it more than 1000 times more sensitive than current commercial systems. Notably, 0.3 Gy is considered a safe exposure level, suggesting that no dangerous level will go undetected.

Photoconversion reactions like photosynthesis or neural stimulation in response to light in our eyes occurs at less than 100% efficiency (less than one molecule reacts to one photon). The system designed by the researchers, however, could achieve 3300% (33 molecules per photon), showing the potential of organic molecules in artificial systems.

“I think this is the highest efficiency ever reported for photoconversion with an organic molecule,” notes Kawai.

###

Resource

Title: Photosynergetic amplification of radiation input: from efficient UV induced cycloreversion to sensitive X-ray detection

Authors: Ryosuke Asato, Colin J. Martin, Jan Patrick Calupitan, Ryo Mizutsu, Takuya Nakashima, Go Okada, Noriaki Kawaguchi, Takayuki Yanagida & Tsuyoshi Kawai

Journal: Chemical Science

DOI: 10.1039/C9SC05380H

Information about Prof. Kawai lab can be found at the following website:
https://mswebs.naist.jp/LABs/kawai/english/index.html

Media Contact
Takahito Shikano
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/C9SC05380H

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advanced AI Methods Revolutionize Solutions to Complex Physics Equations

October 2, 2025

Innovative PtCu@Zeolite Propane Dehydrogenation Catalyst Developed via Ion Exchange and Displacement Reaction Strategy

October 2, 2025

Nanoreactor Cage Harnesses Visible Light for Ultra-Selective Catalytic Cross-Cycloadditions

October 2, 2025

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

VISTA Regulation in Tumor Cells Affects NSCLC Immunity

Enhancing CAR T Cell Therapy for Solid Tumors

Tracking Raccoon Domestication Through Citizen Science Images

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.