• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists invent a new method of generating intense short UV vortices

Bioengineer by Bioengineer
January 23, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Skoltech


An international group of scientists, including Skoltech Professor Sergey Rykovanov, has found a way to generate intense “twisted” pulses. The vortices discovered by the scientists will help investigate new materials. The results of their study were published in the prestigious journal, Nature Communications.

Electromagnetic waves are known to carry energy and momentum and exert the so-called light pressure. This was demonstrated experimentally by the Russian physicist, Pyotr Lebedev, back in 1900. A little-known fact is that electromagnetic waves can also carry the angular momentum, that is, twist objects. The angular momentum (twisting ability) can be transferred in two ways. First, an object can be irradiated by an elliptically or circularly polarized electromagnetic wave to produce the rotational moment, creating the Sadovsky effect. Second, the substance can be twisted by electromagnetic waves with a “vortex” wave structure or, scientifically speaking, waves with an orbital angular momentum (OAM). Visible or IR-range electromagnetic pulses with such capability are already used in telecommunications to increase the data transfer capacity of fiber optic networks. Generating intense OAM pulses in the UV range is a rather challenging task which, if solved, will open new possibilities for exploring and developing new materials at characteristic spatial (tens of nanometers) and temporal (hundreds of attoseconds) scales. Such high-resolution visualizations are used to study and predict materials’ properties.

Skoltech scientists in collaboration with researchers from the Shanghai Institute of Optics and Fine Mechanics (China) and the Helmholtz Institute in Jena (Germany) have proposed a simple way to generate intense short UV OAM pulses.

“We can apply the term “UV vortices” to the pulses we obtained through mathematical modeling. Along with twisted wave fronts, our pulses have a duration of a few hundred attoseconds only ? a temporal scale typical for atomic physics. For comparison, an electron makes one “revolution” in a hydrogen atom within a hundred attoseconds or so,” explains Skoltech Professor Sergey Rykovanov.

The scientists used the most powerful supercomputers in the world and Russia, including the Zhores supercomputer installed at Skoltech last year, to ensure realistic 3D simulation of the UV vortex effect.

Currently, the team is preparing for the vortex search experiment.

The scientists are confident that the generation of intense attosecond UV vortices will break new ground in studying the electrons motion dynamics in various materials and condensed matter.

###

Media Contact
Alina Chernova
[email protected]
7-905-565-3633

Original Source

https://www.skoltech.ru/en/2020/01/scientists-invent-a-new-method-of-generating-intense-short-uv-vortices/

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-13357-1

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsMaterialsMolecular PhysicsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neighboring Groups Speed Up Polymer Self-Deconstruction

Retinal Changes Mirror Brain Damage in Parkinson’s Rats

NEK7 Links SDHB to Prevent Liver Fibrosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.