• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

EU project RES URBIS shows the viability of bioplastic generation with urban biowaste

Bioengineer by Bioengineer
January 13, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J. Mata/UB

In a circular economy, the city waste being turned into resources, is of great importance considering more than 70% of the inhabitants in Europe live in urban areas and produce a great amount of biowaste coming from the treatment of their waste waters. The European project RES URBIS (Resources from Urban Bio-waste), showed that different biowaste produced in an urban environment can be treated within the same chain of valorisation and can obtain products with biological origins, such as bioplastic, with a higher economic value to the classic compost and biogas. The project confirmed the technical and economic viability of this process.

The experimental part of the project was carried out in two pilot plants, located in Lisbon (Portugal) and Treviso (Italy), and in five laboratories -one of them in the Faculty of Chemistry of the UB. It produced a total of 30 kg of polyhydroxyalkanoates (PHA), the basic polymer to create bioplastic with volatile fatty acids from waste decomposition. This PHA was obtained through three new extraction methods carried out within the project, and later, processed by the industrial entities of the consortium to obtain commercial-use bioplastic.

“The results of the project were very positive. We obtained film samples of bioplastic to use them as an interlayer with adjacent film, with a great commercial potential. These bioplastics can be used as long-lasting goods and biocomposites with fibres produced with waste from parks and gardens”, says Joan Mata, professor from the Department of Chemical Engineering and Analytical Chemistry, who leads the participation of the University of Barcelona in the project. “Also -he adds-, the conducted analysis show that the legislation states”.

Regarding commercialization of these bioplastics, the team considered the European regulatory frame on the potential risks for health and environment of chemical products (REACH-CLP), and although there is still a lot to do on the definition of the final condition of the product known as waste final, “the scenario for the commercialization of the product is highly favourable”, notes Mata.

More efficient refineries with a lower environmental impact

The analysis of the life cycle of these bioplastics showed that the materials and energy used by PHA production through the presented biorefinery in the RES URBIS project have a lower environmental impact than the one generated by the plastic production with fossil origin.

The RES URBIS technological chain improved the plants on anaerobic digestion of biowaste. Its economic analysis in the analysed scenario -among which is the Metropolitan Area of Barcelona- shows the production of PHA is viable after a price of 3€/kg and even one less if considering the most favourable conditions of the process. This price, compared to the price of the current commercialized PHA obtained from specific cultures of cereals with a 4-5€/kg cost, shows the economic viability of the process.

“The following step will be to get funding through the EU and the private sector to build a demonstration plant”, says Mata.

###

There are many scientific articles published under the project RES URBIS, the last one related to the acid fermentation as a first step to bioplastics production has been published in the journal Bioresource Technology.

Article reference:

Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario

M.Peces, G.Pozo, K. Koch, J. Dosta, S. Astals

DOI: j.biortech.2019.122561

Link: https://doi.org/10.1016/j.biortech.2019.122561

About Res Urbis

The project RES URBIS (Resources from Urban Bio-waste), is a funded consortium by the European program Horizon 2020. The project, dedicated to the production of bioplastic with biowaste generated in our cities, lasted for three years and received a funding accounting for about three million euros. The final meeting of the project, with twenty participating entities, took place in December 2019.

https://www.resurbis.eu/

Media Contact
Bibiana Bonmatí
[email protected]
0034-934-035-544

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2020/01/001.html

Related Journal Article

http://dx.doi.org/10.1016/j.biortech.2019.122561

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Overcoming Challenges in Metastatic Prostate Cancer Care

Utilizing Weighted Cox Regression in Time-to-Event Studies

Kirigami Parachutes Enable Programmable Reconfiguration

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.