• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Untangling links between nitrogen oxides and airborne sulfates helps tackle hazy air pollution

Bioengineer by Bioengineer
December 24, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Liu Guorui


Dense, hazy fog episodes characterized by relatively high humidity, low visibility and extremely high PM2.5 have been a headache to many megacities including those in Mainland China. Among pollutants that are less than 2.5 microns in diameter (PM2.5), airborne sulfate is one of the most common components of hazy air pollution formed atmospherically via the oxidation of sulphur dioxide (SO2).

While the reactant-product link between sulphur dioxide and airborne sulfate formation is common knowledge, the complex oxidants and mechanisms that enable this transformation are not. In particular, the role of nitrogen oxides in sulfate production is unclear. Managing sulfate pollution has dogged researchers and governments alike as it is not produced directly from pollution sources, unlike nitrogen oxides which are clearly emitted from vehicle exhaust, and the combustion of fossil fuels like coal, diesel and natural gas. This is the first study systematically examining the multiple roles of nitrogen oxides in affecting oxidants that enable this set of chemical reactions.

In collaboration with the California Institute of Technology, a research team led by Prof. YU Jianzhen, Professor at HKUST’s Department of Chemistry and Division of Environment and Sustainability, identified three formation mechanism regimes, corresponding to the three distinct roles that nitrogen oxides play in sulfate production depending on the chemical surroundings. Under low NOx conditions, NOx catalyze the cycling of hydroxyl radicals, an effective oxidant of SO2, and thus promote formation of sulfate. Under extremely high NOx common in haze-fog conditions, NOx act as dominant oxidants of SO2 and thus also promote formation of sulfate. But in an environment with medium-high level of NOx, nitrogen dioxide (a member of the NOx family) would actually serve as a sink for hydroxyl radicals which supresses the oxidation of sulphur dioxide and thus inhibits sulfate formation.

These findings indicate that in order to reduce sulfate levels in highly polluted haze-fog conditions, co-control of SO2 and NOx emissions is necessary. However, since NOx would inhibit sulfate formation when its emissions are intermediately high, suppressing NOx in such environment would thus bring up sulfate levels in the air.

“Since sulfate is formed atmospherically and cannot be controlled directly, we must target its precursor components (such as sulphur dioxide and nitrogen oxides). Effective reduction of sulfate content in the air relies on knowledge of the quantitative relationship it has with its precursors. This work lays the conceptual framework to delineate the relationship between sulfate and one set of its controllable precursors, nitrogen oxides (NOx) – the low and extremely high concentration of NOx could both fuel up the production of sulfate. The policymakers should pay attention to when they try to control the emission of NOx,” explained Prof. Yu.

As sulfate is one of the major components which leads to haze formation and acid rain, this study laid the groundwork for formulating more effective measures of targeting this major pollutant involved in aforementioned events – which do not just block the views or make aquatic environments more acidic, but also compromise human health. With greater understanding and better control, this will lead to improved air quality and better protection of public health and ecological systems as a whole.

The team’s findings were recently published in the scientific journal Nature Geoscience.

###

Media Contact
Jamie Wong
[email protected]
852-346-92512

Original Source

https://www.nature.com/articles/s41561-019-0485-5

Related Journal Article

http://dx.doi.org/10.1038/s41561-019-0485-5

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangeGeographyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Dipeptidase 1 Identified as Porcine Coronavirus Receptor

Dipeptidase 1 Identified as Porcine Coronavirus Receptor

October 10, 2025
Pan-Centromere Evolution in Brassica Plants Explored

Pan-Centromere Evolution in Brassica Plants Explored

October 10, 2025

RNA Extraction’s Role in Respiratory Microbiome Sequencing

October 10, 2025

BestopCloud: All-in-One Solution for Single-Cell RNA Sequencing

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1190 shares
    Share 475 Tweet 297
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tumor-Infiltrating Lymphocytes CD8, FOXP3 in Breast Cancer

Meal Plan Guidelines for Eating Disorder Care

Umbilical Cord Platelet Lysate Protects Lung Healing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.