• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Research reveals how muscles talk to the brain to regulate feeding behavior

Bioengineer by Bioengineer
December 12, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study from St. Jude Children’s Research Hospital sheds light on the mechanisms governing feeding behavior in fruit flies and how skeletal muscle communicates energy needs to the brain

IMAGE

Credit: St. Jude Children’s Research Hospital


The brain determines when it is time to feed – but how does it know? Findings from St. Jude Children’s Research Hospital provide new understanding of how the brain orchestrates this process. Skeletal muscle, like other tissues, communicates with the brain to convey information about nutritional status. The researchers showed that manipulating this mechanism influences food seeking and feeding in fruit flies. This work was published online today in Genes & Development.

Tissues like adipose, intestine and liver signal to the brain through hormones that regulate feeding behavior. Skeletal muscle makes up 40% of the human body and has high energy and nutrient demands. However, until now scientists did not appreciate how skeletal muscle can similarly communicate with the brain through signaling factors called myokines.

“Until now, the brain has been the least-studied target of myokine activity,” said corresponding author Fabio Demontis, Ph.D., of the St. Jude Department of Developmental Neurobiology. “There are many myokines that act on other tissues, but their roles in signaling to the brain have been largely unexplored.”

The molecular key to muscle-brain communication

To better understand how skeletal muscle communicates with the brain regarding feeding behavior, the researchers looked at the myokine Dpp in fruit flies. Dpp is the fruit fly equivalent of the BMP2 and BMP4 signaling factors in humans.

Scientists previously thought that Dpp only transmits signals at short distances. However, the researchers showed that fluorescently tagged Dpp travels long distances from the flight muscles of fruit flies to the brain. Furthermore, the researchers found that reducing Dpp levels promoted feeding and foraging behavior in fruit flies. Conversely, increasing Dpp levels reduced foraging and feeding.

A link between Dpp, dopamine and feeding initiation

The researchers also found that muscle-derived Dpp regulates the levels of brain tyrosine hydroxylase, an enzyme key to the synthesis of the neurotransmitter dopamine. Among a number of other roles, dopamine has previously been linked to feeding behavior.

The researchers found that lowering Dpp levels in muscle led to higher levels of dopamine in the brain and increased feeding. Conversely flies with higher Dpp levels in muscle had lower levels of brain dopamine and were less likely to seek food. The researchers also found that modulation of dopamine synthesis in the brain is key to the regulation of feeding by muscle-derived Dpp.

“Dpp is doing more than anyone thought it was. Beyond feeding behavior, endocrine Dpp signaling could be regulating a number of other tissue and systemic functions, including disease processes that involve dopaminergic neurons, ” Demontis said. “And because Dpp has comparable proteins in humans, it may be relevant to feeding behavior and metabolic diseases in higher organisms.”

###

The study’s other authors are Maricela Robles-Murguia, Deepti Rao, David Finkelstein, Beisi Xu and Yiping Fan, all of St. Jude.

The research was supported in part by The American Parkinson Disease Association, The Glenn Foundation for Medical Research, The Ellison Medical Foundation, The Hartwell Foundation, The American Federation for Aging Research, the National Institute on Aging (R01AG55532 and R56AG063806) and ALSAC, the fundraising and awareness organization of St. Jude.

Media Contact
Katy Hobgood
[email protected]
901-568-9869

Original Source

https://www.stjude.org/media-resources/news-releases/2019-medicine-science-news/muscle-communication-regulates-brain-feeding-behavior.html

Tags: Medicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

August 23, 2025
Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

August 23, 2025

Multi-Omics Reveal Nerve Macrophages in Polyneuropathy

August 23, 2025

Optimizing Basal Insulin Titration: Digital Solutions in India

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Moderate Warming on Soil Microbial Decomposition

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.