• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI wins two R&D 100 Awards

Bioengineer by Bioengineer
December 9, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Superhydrophobic coating, direction-finding antenna honored for innovation

IMAGE

Credit: Southwest Research Institute


SAN ANTONIO — Dec. 9, 2019 — Two Southwest Research Institute-developed technologies were selected as winners of prestigious R&D 100 Awards. R&D Magazine recognized SwRI’s Lotus Superhydrophobic Compositions and Coating Process (LotusFlo™) and AF-369 VHF/UHF Terrestrial Direction-Finding Antenna as being among the 100 most significant innovations for 2019.

Lotus Superhydrophobic Compositions and Coating Process (LotusFlo™)

A common problem in the oil industry is the sticky, tar-like substances found in crude oil, which can slow or even stop the flow of oil through offshore drilling pipes. This problem usually requires pumping costly chemicals, which can pollute the surrounding ocean, into the pipes to remove these substances.

LotusFlo is a coating technology that is superhydrophobic, designed specifically to repel liquids and materials that often clog oil drilling pipes. The coating is applied to the pipes under vacuum conditions through a unique process. It involves linking several 40-foot sections of pipe together in very low atmospheric pressures. The interiors essentially act as a vacuum chamber, with an end unit on either side of the pipe providing the vacuum source. An electrode is strung through the pipe from one end to the other and suspended in the middle of the pipe.

Volatile molecules are then introduced into the evacuated pipe to ignite highly ionized gas molecules, or plasma, inside the entire length of the pipe structure. The plasma, once ignited, emits light and fragments in a special way to allow control over the chemical precursor molecules to form other ions in the plasma, which are then accelerated very rapidly onto the internal surface of the pipe. When the ions collide on the interior surface, they undergo a polymerization reaction that results in a partially inorganic coating. This glass-like coating is what keeps materials from adhering to pipe surfaces.

AF-369 VHF/UHF Terrestrial Direction-Finding Antenna

Mitigating ongoing threats to national security requires timely intelligence data, including signals intelligence obtained through electronic surveillance. The military use modern signals intelligence systems to collect this information by monitoring electronic communications transmitted over the air.

SwRI’s AF-369 VHF/UHF Terrestrial Direction-Finding Antenna provides accurate direction finding of radio frequency (RF) transmissions from 20 MHz to 3 GHz. Its novel sleeved electric dipoles boast 80% more useable bandwidth than conventional dipoles. They enable the product to have 10 times the sensitivity with significantly reduced cost and complexity.

Direction finding is performed using antenna arrays made up of multiple antenna array elements to sample the incoming wave field. Frequencies typically used for line-of-sight communications are spread across the 20 MHz to 3 GHz RF spectrum, a tremendous amount of bandwidth to monitor.

To monitor this broad spectrum requires multiple arrays, each with elements designed to cover a smaller sub-band of frequencies. Each sub-band typically uses between five and nine antenna elements with the total number required to cover the full frequency range increasing with the addition of each sub-band. The cost of each DF antenna array, as well as the complexity of the RF receiving system connected to it, drives up costs for both the antenna itself and the system as a whole. SwRI’s innovative sleeved electric dipoles for the AF-369 antenna reduce the number of antenna arrays necessary to monitor a similar amount of bandwidth, thereby lowering the cost of the entire system and simultaneously improving its performance.

“SwRI seeks solutions for the world’s most complex problems,” said SwRI President Adam L. Hamilton, P.E. “We are committed to continuously improving the world around us through innovation, and it’s an honor to see the Institute recognized for those efforts at what’s widely known as the ‘Oscars of Innovation.'”

The R&D 100 Awards are among the most prestigious innovation awards programs, honoring the top 100 revolutionary technologies each year since 1963. Recipients hail from research institutions, academic and government laboratories, Fortune 500 companies and smaller organizations. Since 1971, SwRI has won 45 R&D 100 Awards. This year’s winners were recognized December 5 in San Francisco.

For more information, visit https://www.swri.org/industries/surface-engineering or https://www.swri.org/industries/signals-intelligence-solutions.

###

Media Contact
Joanna Carver
[email protected]
210-522-2073

Original Source

https://www.swri.org/press-release/swri-two-rd-100-awards-lotusflo-af-369-vhf-uhf

Tags: Electrical Engineering/ElectronicsElectromagneticsEnergy SourcesMaterialsMechanical EngineeringResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Key Genes for Fish Adaptation: Spotlight on Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.