• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New ‘hyper glue’ formula developed by UBCO and UVic researchers

Bioengineer by Bioengineer
December 4, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cross-linking technology tightly binds where commercial glues cannot

IMAGE

Credit: UBC Okanagan


With many of the products we use every day held together by adhesives, researchers from UBC’s Okanagan campus and the University of Victoria hope to make everything from protective clothing to medical implants and residential plumbing stronger and more corrosion resistant thanks to a newly-developed ‘hyper glue’ formula.

The team of chemists and composite materials researchers discovered a broadly applicable method of bonding plastics and synthetic fibres at the molecular level in a procedure called cross-linking. The cross-linking takes effect when the adhesive is exposed to heat or long-wave UV light making strong connections that are both impact-resistant and corrosion-resistant. Even with a minimal amount of cross-linking, the materials are tightly bonded.

“It turns out the adhesive is particularly effective in high-density polyethylene, which is an important plastic used in bottles, piping, geomembranes, plastic lumber and many other applications,” says Professor Abbas Milani, director of UBC’s Materials and Manufacturing Research Institute, and the lead researcher at the Okanagan node of the Composite Research Network. “In fact, commercially available glues didn’t work at all on these materials, making our discovery an impressive foundation for a wide range of important uses.”

UVic Organic Chemistry Professor Jeremy Wulff, whose team led the design of the new class of cross-linking materials, collaborated with the UBC Survive and Thrive Applied Research to explore how it performed in real-world applications.

“The UBC STAR team was able put the material through its paces and test its viability in some incredible applications, including ballistic protection for first responders,” says Wulff.

The discovery, he says, is already playing an important role in the Comfort-Optimized Materials for Operational Resilience, Thermal-transport and Survivability (COMFORTS) network, a team of researchers from UBC, UVic and the University of Alberta who are collaborating to create high-performance body armour.

“By using this cross-linking technology, we’re better able to strongly fuse together different layers of fabric types to create the next generation of clothing for extreme environments,” says Wulff. “At the same time, the cross-linker provides additional material strength to the fabric itself.”

Milani is quick to point out that an incredibly strong bonding agent is just the beginning of what it can do.

“Imagine paints that never peel or waterproof coatings that never need to be resealed,” says Milani. “We’re even starting to think about using it as a way to bond lots of different plastic types together, which is a major challenge in the recycling of plastics and their composites.”

“There is real potential to make some of our everyday items stronger and less prone to failure, which is what many chemists and composite materials engineers strive for.”

###

The research was published recently in the journal Science and was co-sponsored by Victoria-based company Epic Ventures and Mitacs Canada.

Media Contact
Nathan Skolski
[email protected]
250-807-9926

Original Source

https://news.ok.ubc.ca/2019/12/04/new-hyper-glue-formula-developed-by-ubco-and-uvic-researchers

Related Journal Article

http://dx.doi.org/10.1126/science.aay6230

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMechanical EngineeringPolymer ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

October 2, 2025

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

October 2, 2025

Key Genes for Fish Adaptation: Spotlight on Mechanisms

October 2, 2025

Brain Activity Changes in Epilepsy and Cognitive Impairment

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Key Genes for Fish Adaptation: Spotlight on Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.