• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Thermo-chemical power generation integrated with forced convection cooling

Bioengineer by Bioengineer
November 27, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tokyo Tech

Active cooling is crucial in most modern technologies, ranging from microprocessors in data centers to turbines and engines. Forced convection cooling, which circulates a coolant fluid over the surface of a hot object, is effective for meeting such cooling requirements but demands a pumping power to send the coolant through the heat generating section. However, active cooling ? fast removal of a large quantity of thermal energy in the heat source under a large temperature difference ? promptly destroys the free-energy component of the thermal energy, which is an energy portion that can be converted to an electric work. This issue concomitant with forced convection cooling has remained unaddressed despite the widespread use of forced convection cooling in the current world.

One specific method for converting wasted heat ? the heat that doesn’t need to be actively removed ? into electrical energy through liquid chemical reactions has been studied for several decades. This method, called thermo-electrochemical conversion, involves the submergence of two electrodes held at different temperatures in a liquid electrolyte encased in a closed vessel, where a reversible reduction-oxidation (“redox”) reaction occurs. This reaction generates an electric current through an external circuit. Research on thermo-electrochemical conversion has been mostly carried out for static fluids.

In this study, a team of researchers from Tokyo Institute of Technology integrated thermo-electrochemical conversion with forced convection cooling to partly recover the aforementioned free-energy portion, presently lost during forced-convection cooling, in the form of electric power. In the cell developed by these researchers, the electrolyte liquid is flown as a coolant between two parallel electrodes, one of which is a heat-releasing object to be cooled. The redox reaction occurring in the cell generates electricity; this electricity can be used to drive the coolant flow through the cell. This work delves into uncharted territory, as the concept and feasibility of self-sustaining liquid-cooling system have not been previously demonstrated.

The researchers carried out detailed studies to elucidate how the cooling and power generation works in this type of forced-flow thermo-electrochemical system. These novel findings are expected to provide a basic strategy for scaled-up future applications. “Although the prototype cell developed in this study was small and thus the power generation performance was limited, this technology has much scope for improvement through optimizing the geometry of the liquid channel, electrode material, and the redox chemicals,” remarks Prof. Yoichi Murakami, the principle investigator of this project.

Through further studies, this concept proposed by the researchers can hopefully find its application in near future, providing a new technological platform for forced convection cooling. “Through this approach, we can partially recover the free energy portion of the thermal energy currently lost during forced convection cooling, and this acquired electric power can be used for pumping the coolant in forced convection cooling,” concludes Prof. Murakami.

###

Media Contact
Kazuhide Hasegawa
[email protected]
81-357-342-975

Original Source

https://www.titech.ac.jp/english/news/2019/045723.html

Related Journal Article

http://dx.doi.org/10.1039/c9cp05028k

Tags: Energy/Fuel (non-petroleum)Industrial Engineering/ChemistryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Child’s Left Pulmonary Aplasia and Artery Agenesis Case

Predicting RSV Infection Age from Birth Timing

Morphological Anomalies Found in Japanese Haemaphysalis Ticks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.